Suppr超能文献

DEER光谱中非参数距离分布的贝叶斯概率推断

Bayesian Probabilistic Inference of Nonparametric Distance Distributions in DEER Spectroscopy.

作者信息

Sweger Sarah R, Cheung Julian C, Zha Lukas, Pribitzer Stephan, Stoll Stefan

机构信息

Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.

出版信息

J Phys Chem A. 2024 Oct 17;128(41):9071-9081. doi: 10.1021/acs.jpca.4c05056. Epub 2024 Oct 4.

Abstract

Double electron-electron resonance (DEER) spectroscopy measures distance distributions between spin labels in proteins, yielding important structural and energetic information about conformational landscapes. Analysis of an experimental DEER signal in terms of a distance distribution is a nontrivial task due to the ill-posed nature of the underlying mathematical inversion problem. This work introduces a Bayesian probabilistic inference approach to analyze DEER data, assuming a nonparametric distance distribution with a Tikhonov smoothness prior. The method uses Markov Chain Monte Carlo sampling with a compositional Gibbs sampler to determine a posterior probability distribution over the entire parameter space, including the distance distribution, given an experimental data set. This posterior contains all of the information available from the data, including a full quantification of the uncertainty about the model parameters. The corresponding uncertainty about the distance distribution is visually captured via an ensemble of posterior predictive distributions. Several examples are presented to illustrate the method. Compared with bootstrapping, it performs faster and provides slightly larger uncertainty intervals.

摘要

双电子-电子共振(DEER)光谱法可测量蛋白质中自旋标记之间的距离分布,从而产生有关构象景观的重要结构和能量信息。由于潜在数学反演问题的不适定性,根据距离分布分析实验DEER信号是一项具有挑战性的任务。这项工作引入了一种贝叶斯概率推理方法来分析DEER数据,假设具有Tikhonov平滑先验的非参数距离分布。该方法使用带有组合吉布斯采样器的马尔可夫链蒙特卡罗采样,以在给定实验数据集的情况下确定整个参数空间(包括距离分布)上的后验概率分布。这个后验包含了数据中所有可用的信息,包括对模型参数不确定性的全面量化。通过后验预测分布的集合直观地捕捉距离分布的相应不确定性。给出了几个例子来说明该方法。与自助法相比,它执行速度更快,并且提供的不确定性区间略大。

相似文献

9
General regularization framework for DEER spectroscopy.通用的 DEER 光谱学正则化框架。
J Magn Reson. 2019 Mar;300:28-40. doi: 10.1016/j.jmr.2019.01.008. Epub 2019 Jan 19.

本文引用的文献

1
Bayesian analysis of 1D H-NMR spectra.一维氢核磁共振谱的贝叶斯分析
J Magn Reson. 2024 Jul;364:107723. doi: 10.1016/j.jmr.2024.107723. Epub 2024 Jun 15.
3
4
Dipolar pathways in dipolar EPR spectroscopy.偶极子 EPR 光谱中的偶极子途径。
Phys Chem Chem Phys. 2022 Jan 26;24(4):2504-2520. doi: 10.1039/d1cp03305k.
10
Deep neural network processing of DEER data.DEER数据的深度神经网络处理
Sci Adv. 2018 Aug 24;4(8):eaat5218. doi: 10.1126/sciadv.aat5218. eCollection 2018 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验