Sweger Sarah R, Cheung Julian C, Zha Lukas, Pribitzer Stephan, Stoll Stefan
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
J Phys Chem A. 2024 Oct 17;128(41):9071-9081. doi: 10.1021/acs.jpca.4c05056. Epub 2024 Oct 4.
Double electron-electron resonance (DEER) spectroscopy measures distance distributions between spin labels in proteins, yielding important structural and energetic information about conformational landscapes. Analysis of an experimental DEER signal in terms of a distance distribution is a nontrivial task due to the ill-posed nature of the underlying mathematical inversion problem. This work introduces a Bayesian probabilistic inference approach to analyze DEER data, assuming a nonparametric distance distribution with a Tikhonov smoothness prior. The method uses Markov Chain Monte Carlo sampling with a compositional Gibbs sampler to determine a posterior probability distribution over the entire parameter space, including the distance distribution, given an experimental data set. This posterior contains all of the information available from the data, including a full quantification of the uncertainty about the model parameters. The corresponding uncertainty about the distance distribution is visually captured via an ensemble of posterior predictive distributions. Several examples are presented to illustrate the method. Compared with bootstrapping, it performs faster and provides slightly larger uncertainty intervals.
双电子-电子共振(DEER)光谱法可测量蛋白质中自旋标记之间的距离分布,从而产生有关构象景观的重要结构和能量信息。由于潜在数学反演问题的不适定性,根据距离分布分析实验DEER信号是一项具有挑战性的任务。这项工作引入了一种贝叶斯概率推理方法来分析DEER数据,假设具有Tikhonov平滑先验的非参数距离分布。该方法使用带有组合吉布斯采样器的马尔可夫链蒙特卡罗采样,以在给定实验数据集的情况下确定整个参数空间(包括距离分布)上的后验概率分布。这个后验包含了数据中所有可用的信息,包括对模型参数不确定性的全面量化。通过后验预测分布的集合直观地捕捉距离分布的相应不确定性。给出了几个例子来说明该方法。与自助法相比,它执行速度更快,并且提供的不确定性区间略大。