Maier Alexandra, Jia Qi, Shukla Keshav, Dugulan Achim Iulian, Hagedoorn Peter-Leon, van Oossanen Rogier, van Rhoon Gerard, Denkova Antonia G, Djanashvili Kristina
Department of Biotechnology, Delft University of Technology, 2628 HZ Delft, The Netherlands.
Department of Radiation Science and Technology, Delft University of Technology, 2629 JB Delft, The Netherlands.
ACS Appl Nano Mater. 2024 Dec 4;7(23):27465-27475. doi: 10.1021/acsanm.4c05452. eCollection 2024 Dec 13.
Multifunctional, biocompatible magnetic materials, such as iron oxide nanoparticles (IONPs), hold great potential for biomedical applications including diagnostics (e.g., MRI) and cancer therapy. In particular, they can play a crucial role in advancing cancer thermotherapy by generating heat when administered intratumorally and when exposed to an alternating magnetic field. This heat application is often combined with radio- (chemo)therapy and/or imaging. Consequently, the design of materials for such a multimodal approach requires hybrid nanoparticles that retain their magnetic properties while integrating additional functionalities. This work introduces synthesis and investigation of magnetically enhanced nanoparticles with a palladium core (envisioned for future radiolabeling with therapeutic Pd) and a magnetic iron oxide shell containing paramagnetic manganese (Pd/Fe|(nMn)-oxide, = 0.25 and 0.5). Doping the iron oxide lattice with Mn significantly increases magnetic saturation, boosting specific loss power up to 1.7 times compared to that of undoped analogs. Interestingly, higher Mn-content in Pd/Fe|(0.5Mn)-oxide leads to a pronounced Mn outer rim, enhancing the heating efficiency at 346 kHz and 23 mT and contributing to the water exchange on the surface of the paramagnetically doped nanoparticles, resulting in additional MRI contrast. The enhanced magnetic properties of the hybrid Pd/Fe|Mn-oxide nanoparticles enable effective therapeutic outcomes with injection of only small quantities of the material, offering great potential for effective cancer treatment strategies that combine hyperthermia/thermal ablation with radiotherapy while allowing for real-time monitoring via MRI.
多功能生物相容性磁性材料,如氧化铁纳米颗粒(IONPs),在包括诊断(如MRI)和癌症治疗在内的生物医学应用中具有巨大潜力。特别是,当在肿瘤内给药并暴露于交变磁场时,它们可以通过产热在推进癌症热疗中发挥关键作用。这种热应用通常与放射(化学)疗法和/或成像相结合。因此,用于这种多模态方法的材料设计需要混合纳米颗粒,这些纳米颗粒在整合额外功能的同时保留其磁性。这项工作介绍了具有钯核(设想用于未来用治疗性钯进行放射性标记)和含有顺磁性锰的磁性氧化铁壳层(Pd/Fe|(nMn)-氧化物,n = 0.25和0.5)的磁性增强纳米颗粒的合成与研究。用锰掺杂氧化铁晶格可显著提高磁饱和度,与未掺杂的类似物相比,比损耗功率提高了1.7倍。有趣的是,Pd/Fe|(0.5Mn)-氧化物中较高的锰含量导致明显的锰外缘,提高了在346 kHz和23 mT下的加热效率,并有助于顺磁性掺杂纳米颗粒表面的水交换,从而产生额外的MRI对比度。混合Pd/Fe|Mn-氧化物纳米颗粒增强的磁性使得仅注射少量材料就能实现有效的治疗效果,为将热疗/热消融与放射疗法相结合同时允许通过MRI进行实时监测的有效癌症治疗策略提供了巨大潜力。