Suppr超能文献

基于体表的超声扫描用于前列腺癌筛查

Surface-Based Ultrasound Scans for the Screening of Prostate Cancer.

作者信息

Bennett Rory, Barrett Tristan, Gnanapragasam Vincent J, Tse Zion

机构信息

School of Engineering and Materials ScienceQueen Mary University of London E1 4NS London U.K.

Department of Radiology, Addenbrooke's HospitalUniversity of Cambridge School of Clinical Medicine CB2 0QQ Cambridge U.K.

出版信息

IEEE Open J Eng Med Biol. 2024 Nov 20;6:212-218. doi: 10.1109/OJEMB.2024.3503494. eCollection 2025.

Abstract

Surface-based ultrasound (SUS) systems have undergone substantial improvement over the years in image quality, ease-of-use, and reduction in size. Their ability to image organs non-invasively makes them a prime technology for the diagnosis and monitoring of various diseases and conditions. An example is the screening/risk- stratification of prostate cancer (PCa) using prostate-specific antigen density (PSAD). Current literature predominantly focuses on prostate volume (PV) estimation techniques that make use of magnetic resonance imaging (MRI) or transrectal ultrasound (TRUS) imaging, while SUS techniques are largely overlooked. If a reliable SUS PCa screening method can be introduced, patients may be able to forgo unnecessary MRI or TRUS scans. Such a screening procedure could be introduced into standard primary care settings with point-of-care ultrasound systems available at a fraction of the cost of their larger hospital counterparts. This review analyses whether literature suggests it is possible to use SUS-derived PV in the calculation of PSAD.

摘要

多年来,基于表面的超声(SUS)系统在图像质量、易用性和尺寸减小方面有了显著改进。它们能够对器官进行无创成像,使其成为诊断和监测各种疾病及病症的主要技术。一个例子是使用前列腺特异性抗原密度(PSAD)对前列腺癌(PCa)进行筛查/风险分层。当前文献主要关注利用磁共振成像(MRI)或经直肠超声(TRUS)成像的前列腺体积(PV)估计技术,而SUS技术在很大程度上被忽视了。如果能够引入一种可靠的SUS PCa筛查方法,患者或许可以避免不必要的MRI或TRUS扫描。这样一种筛查程序可以引入到标准的初级保健机构,使用即时超声系统,其成本仅为大型医院同类设备的一小部分。本综述分析了文献是否表明可以在PSAD的计算中使用SUS得出的PV。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ffd/11655114/926e5070d567/tse1-3503494.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验