Suppr超能文献

数据驱动型与心理性人格气质:人格测量在精神病学中的理论与临床应用

Data-driven vs. psychological personality temperaments: theoretical and clinical utility of personality measures in psychiatry.

作者信息

Sawalma Abdelrahman S, Sehwail Mahmud A, Dammers Jürgen, Herzallah Mohammad M

机构信息

Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem, Palestine.

Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany.

出版信息

Front Psychiatry. 2024 Dec 5;15:1436121. doi: 10.3389/fpsyt.2024.1436121. eCollection 2024.

Abstract

Decades of research on personality identified dissociable psychological temperaments. Cloninger's temperament and character theory used a psychobiological approach to differentiate three major dimensions of personality: harm avoidance, novelty seeking, and reward dependence. Previous studies, heretofore, did not examine the correspondence between Cloninger's psychological temperaments and statistically independent data-driven components and how that could enhance the clinical utility of personality temperaments. In this study, we validated an Arabic version of the tri-dimensional personality questionnaire (TPQ) to construct data-driven personality temperaments using independent component analysis (ICA). Using SVM, we contrasted the clinical utility of data-driven personality vs. Cloninger's psychological temperaments in differentiating medication-naïve patients with major depressive disorder (N=244) and healthy subjects (N=1109). Data-driven personality components based on ICA showed very little overlap with Cloninger's original temperaments. Both Cloninger's temperaments and data-driven components revealed low internal consistency (for subscales) but high test-retest reliability. Cloninger's temperaments, however, showed a poor goodness-of-fit for the structure of the TPQ. Data-driven components significantly outperformed psychological TPQ temperaments with higher accuracy and recall but not precision. To our knowledge, this is the first study to examine the clinical utility of data-driven vs. psychological personality metrics using a sizeable sample of patients and healthy individuals. Our results could have wide implications for reexamining psychometric data to extract data-driven latent structures that can improve replicability, clinical utility, and cross-disciplinary inference.

摘要

数十年来对人格的研究确定了可分离的心理气质类型。克隆宁格的气质与性格理论采用心理生物学方法来区分人格的三个主要维度:避免伤害、寻求新奇和奖赏依赖。在此之前,以往的研究并未考察克隆宁格的心理气质类型与统计上独立的数据驱动成分之间的对应关系,以及这如何能够提高人格气质类型的临床效用。在本研究中,我们对三维人格问卷(TPQ)的阿拉伯语版本进行了验证,以使用独立成分分析(ICA)构建数据驱动的人格气质类型。我们使用支持向量机(SVM),对比了数据驱动的人格与克隆宁格的心理气质类型在区分未服用过药物的重度抑郁症患者(N = 244)和健康受试者(N = 1109)方面的临床效用。基于ICA的数据驱动人格成分与克隆宁格的原始气质类型几乎没有重叠。克隆宁格的气质类型和数据驱动成分均显示出较低的内部一致性(针对分量表),但重测信度较高。然而,克隆宁格的气质类型对TPQ的结构拟合度较差。数据驱动成分在准确性和召回率方面显著优于心理TPQ气质类型,但在精确率方面并非如此。据我们所知,这是第一项使用大量患者和健康个体样本考察数据驱动与心理人格指标临床效用的研究。我们的结果可能对重新审视心理测量数据以提取能够提高可重复性、临床效用和跨学科推断能力的数据驱动潜在结构具有广泛的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验