Suppr超能文献

ST-SCSR:通过结构相关性和自表示来识别空间转录组学数据中的空间域。

ST-SCSR: identifying spatial domains in spatial transcriptomics data via structure correlation and self-representation.

机构信息

School of Computer Science and Technology, Xidian University, No. 2 South Taibai Road, 710071 Xi'an Shaanxi, China.

Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No. 2 South Taibai Road, 710071 Xi'an Shaanxi, China.

出版信息

Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae437.

Abstract

Recent advances in spatial transcriptomics (ST) enable measurements of transcriptome within intact biological tissues by preserving spatial information, offering biologists unprecedented opportunities to comprehensively understand tissue micro-environment, where spatial domains are basic units of tissues. Although great efforts are devoted to this issue, they still have many shortcomings, such as ignoring local information and relations of spatial domains, requiring alternatives to solve these problems. Here, a novel algorithm for spatial domain identification in Spatial Transcriptomics data with Structure Correlation and Self-Representation (ST-SCSR), which integrates local information, global information, and similarity of spatial domains. Specifically, ST-SCSR utilzes matrix tri-factorization to simultaneously decompose expression profiles and spatial network of spots, where expressional and spatial features of spots are fused via the shared factor matrix that interpreted as similarity of spatial domains. Furthermore, ST-SCSR learns affinity graph of spots by manipulating expressional and spatial features, where local preservation and sparse constraints are employed, thereby enhancing the quality of graph. The experimental results demonstrate that ST-SCSR not only outperforms state-of-the-art algorithms in terms of accuracy, but also identifies many potential interesting patterns.

摘要

近年来,空间转录组学(ST)的发展使得人们能够通过保留空间信息来测量完整生物组织中的转录组,这为生物学家提供了前所未有的机会来全面了解组织微环境,其中空间域是组织的基本单位。尽管人们为此付出了巨大的努力,但仍然存在许多缺点,例如忽略空间域的局部信息和关系,需要替代方法来解决这些问题。在这里,我们提出了一种新的算法 ST-SCSR(基于结构相关性和自表示的空间域识别算法),用于解决这个问题。该算法整合了局部信息、全局信息和空间域的相似性。具体来说,ST-SCSR 利用矩阵三因子分解同时分解表达谱和斑点的空间网络,其中斑点的表达和空间特征通过共享因子矩阵融合,该矩阵被解释为空间域的相似性。此外,ST-SCSR 通过操作表达和空间特征来学习斑点的亲和图,其中采用了局部保持和稀疏约束,从而提高了图的质量。实验结果表明,ST-SCSR 在准确性方面不仅优于最先进的算法,而且还能够识别出许多潜在的有趣模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b01c/11372132/09f961e0f534/bbae437f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验