Suppr超能文献

传统扩散加权成像与多重敏感性编码结合基于深度学习重建在乳腺磁共振成像中的比较

Comparison of conventional diffusion-weighted imaging and multiplexed sensitivity-encoding combined with deep learning-based reconstruction in breast magnetic resonance imaging.

作者信息

Xiao Yitian, Yang Fan, Deng Qiao, Ming Yue, Tang Lu, Yue Shuting, Li Zheng, Zhang Bo, Liang Huilou, Huang Juan, Sun Jiayu

机构信息

Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.

West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Magn Reson Imaging. 2025 Apr;117:110316. doi: 10.1016/j.mri.2024.110316. Epub 2024 Dec 21.

Abstract

PURPOSE

To evaluate the feasibility of multiplexed sensitivity-encoding (MUSE) with deep learning-based reconstruction (DLR) for breast imaging in comparison with conventional diffusion-weighted imaging (DWI) and MUSE alone.

METHODS

This study was conducted using conventional single-shot DWI and MUSE data of female participants who underwent breast magnetic resonance imaging (MRI) from June to December 2023. The k-space data in MUSE were reconstructed using both conventional reconstruction and DLR. Two experienced radiologists conducted quantitative analyses of DWI, MUSE, and MUSE-DLR images by obtaining the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of lesions and normal tissue and qualitative analyses by using a 5-point Likert scale to assess the image quality. Inter-reader agreement was assessed using the intraclass correlation coefficient (ICC). Image scores, SNR, CNR, and apparent diffusion coefficient (ADC) measurements among the three sequences were compared using the Friedman test, with significance defined at P < 0.05.

RESULTS

In evaluations of the images of 51 female participants using the three sequences, the two radiologists exhibited good agreement (ICC = 0.540-1.000, P < 0.05). MUSE-DLR showed significantly better SNR than MUSE (P < 0.001), while the ADC values within lesions and tissues did not differ significantly among the three sequences (P = 0.924, P = 0.636, respectively). In the subjective assessments, MUSE and MUSE-DLR scored significantly higher than conventional DWI in overall image quality, geometric distortion and axillary lymph node (P < 0.001).

CONCLUSION

In comparison with conventional DWI, MUSE-DLR yielded improved image quality with only a slightly longer acquisition time.

摘要

目的

与传统扩散加权成像(DWI)和单独的多通道敏感性编码(MUSE)相比,评估基于深度学习重建(DLR)的多通道敏感性编码(MUSE)用于乳腺成像的可行性。

方法

本研究使用了2023年6月至12月接受乳腺磁共振成像(MRI)的女性参与者的传统单次激发DWI和MUSE数据。MUSE中的k空间数据使用传统重建和DLR进行重建。两名经验丰富的放射科医生通过获取病变和正常组织的信噪比(SNR)和对比噪声比(CNR)对DWI、MUSE和MUSE-DLR图像进行定量分析,并使用5点李克特量表对图像质量进行定性分析。使用组内相关系数(ICC)评估阅片者间的一致性。使用Friedman检验比较三个序列之间的图像评分、SNR、CNR和表观扩散系数(ADC)测量值,显著性定义为P < 0.05。

结果

在使用三个序列对51名女性参与者的图像进行评估时,两名放射科医生表现出良好的一致性(ICC = 0.540 - 1.000,P < 0.05)。MUSE-DLR的SNR显著优于MUSE(P < 0.001),而三个序列中病变和组织内的ADC值无显著差异(分别为P = 0.924,P = 0.636)。在主观评估中,MUSE和MUSE-DLR在整体图像质量、几何畸变和腋窝淋巴结方面的评分显著高于传统DWI(P < 0.001)。

结论

与传统DWI相比,MUSE-DLR在采集时间仅略有延长的情况下提高了图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验