Li Yue, Wu Yingjie, He Qiang
School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
Research (Wash D C). 2024 Dec 23;7:0566. doi: 10.34133/research.0566. eCollection 2024.
Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FF-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose. The as-synthesized particles enable the incorporation of thylakoid vesicles into the cavity, ensuring a geometric asymmetric nanoarchitecture. The chemical gradient in the neck channel across flasklike colloidal motors facilitates autonomous movement at a speed of 1.19 μm/s in a ΔpH value of 4. Computer simulations reveal the self-actuated flasklike colloidal motors driven by self-diffusiophoretic force. These flasklike colloidal motors display positive directional motion along an adenosine diphosphate (ADP) concentration gradient during adenosine triphosphate (ATP) synthesis. The positive chemotaxis is ascribed that the phosphorylation reaction occurring inside colloidal motors generates 2 distinct phoretic torques at the bottom and the opening owing to the diffusion of ADP, thereby a continuous reorientation motion. Such a biophysical strategy that nanosized rotary protein molecular motors propel the directional movement of a flasklike colloidal motor holds promise for designing new types of biomedical swimming nanobots.
活的微生物能够响应化学引诱剂梯度进行定向迁移以觅食。我们报道了一种仿生策略,即旋转的FF - ATP酶(腺苷三磷酸酶)驱动的烧瓶状胶体马达表现出类似于细菌趋化行为的正向趋化性。通过由三嵌段共聚物和核糖组成的纳米乳液的聚合、膨胀、表面破裂和再聚合来制备流线型烧瓶状胶体颗粒。合成后的颗粒能够将类囊体囊泡纳入腔内,确保了几何不对称的纳米结构。烧瓶状胶体马达颈部通道中的化学梯度有助于在ΔpH值为4时以1.19μm/s的速度自主运动。计算机模拟揭示了由自扩散电泳力驱动的自驱动烧瓶状胶体马达。这些烧瓶状胶体马达在三磷酸腺苷(ATP)合成过程中沿二磷酸腺苷(ADP)浓度梯度显示出正向定向运动。正向趋化性归因于胶体马达内部发生的磷酸化反应由于ADP的扩散在底部和开口处产生2种不同的电泳扭矩,从而产生连续的重新定向运动。这种纳米级旋转蛋白分子马达推动烧瓶状胶体马达定向运动的生物物理策略有望用于设计新型生物医学游泳纳米机器人。