Dorfner Felix J, Vahldiek Janis L, Donle Leonhard, Zhukov Andrei, Xu Lina, Häntze Hartmut, Makowski Marcus R, Aerts Hugo J W L, Proft Fabian, Rios Rodriguez Valeria, Rademacher Judith, Protopopov Mikhail, Haibel Hildrun, Hermann Kay-Geert, Diekhoff Torsten, Adams Lisa C, Torgutalp Murat, Poddubnyy Denis, Bressem Keno K
Department of Radiology, Charite - Universitatsmedizin Berlin, Berlin, Germany.
Department of Gastroenterology, Infectious Diseases and Rheumatology (incl. Nutrition Medicine), Charite - Universitatsmedizin Berlin, Berlin, Germany.
RMD Open. 2024 Dec 23;10(4):e004628. doi: 10.1136/rmdopen-2024-004628.
To examine whether incorporating anatomy-centred deep learning can improve generalisability and enable prediction of disease progression.
This retrospective multicentre study included conventional pelvic radiographs of four different patient cohorts focusing on axial spondyloarthritis collected at university and community hospitals. The first cohort, which consisted of 1483 radiographs, was split into training (n=1261) and validation (n=222) sets. The other cohorts comprising 436, 340 and 163 patients, respectively, were used as independent test datasets. For the second cohort, follow-up data of 311 patients was used to examine progression prediction capabilities. Two neural networks were trained, one on images cropped to the bounding box of the sacroiliac joints (anatomy-centred) and the other one on full radiographs. The performance of the models was compared using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity.
On the three test datasets, the standard model achieved AUC scores of 0.853, 0.817, 0.947, with an accuracy of 0.770, 0.724, 0.850. Whereas the anatomy-centred model achieved AUC scores of 0.899, 0.846, 0.957, with an accuracy of 0.821, 0.744, 0.906, respectively. The patients who were identified as high risk by the anatomy-centred model had an OR of 2.16 (95% CI 1.19, 3.86) for having progression of radiographic sacroiliitis within 2 years.
Anatomy-centred deep learning can improve the generalisability of models in detecting radiographic sacroiliitis. The model is published as fully open source alongside this study.
研究纳入以解剖学为中心的深度学习是否能提高泛化能力并实现疾病进展预测。
这项回顾性多中心研究纳入了在大学和社区医院收集的针对轴向脊柱关节炎的四个不同患者队列的传统骨盆X线片。第一个队列由1483张X线片组成,分为训练集(n = 1261)和验证集(n = 222)。其他分别包含436、340和163名患者的队列用作独立测试数据集。对于第二个队列,使用311名患者的随访数据来检验进展预测能力。训练了两个神经网络,一个基于裁剪到骶髂关节边界框的图像(以解剖学为中心),另一个基于完整的X线片。使用受试者操作特征曲线下面积(AUC)、准确率、敏感性和特异性比较模型的性能。
在三个测试数据集中,标准模型的AUC分数分别为0.853、0.817、0.947,准确率分别为0.770、0.724、0.850。而以解剖学为中心的模型的AUC分数分别为0.899、0.846、0.957,准确率分别为0.821、0.744、0.906。以解剖学为中心的模型识别出的高风险患者在2年内发生放射学骶髂关节炎进展的比值比为2.16(95%CI 1.19,3.86)。
以解剖学为中心的深度学习可以提高模型检测放射学骶髂关节炎的泛化能力。该模型与本研究一起作为完全开源发布。