Pauliuk Stefan, Carrer Fabio, Heeren Niko, Hertwich Edgar G
Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany.
Industrial Ecology Program Norwegian University of Science and Technology Trondheim Norway.
J Ind Ecol. 2024 Dec;28(6):1699-1715. doi: 10.1111/jiec.13557. Epub 2024 Oct 8.
Residential and non-residential buildings are a major contributor to human well-being. At the same time, buildings cause 30% of final energy use, 18% of greenhouse gas emissions (GHGE), and about 65% of material accumulation globally. With electrification and higher energy efficiency of buildings, material-related emissions gain relevance. The circular economy (CE) strategies, , together with wooden buildings, can reduce material-related emissions. We provide a comprehensive set of building stock transformation scenarios for 10 world regions until 2060, using the resource efficiency climate change model of the stock-flow-service nexus and including the full CE spectrum plus wood-intensive buildings. The 2020-2050 global cumulative new construction ranges from 150 to 280 billion m for residential and 70-120 billion m for non-residential buildings. Ambitious CE reduces cumulative 2020-2050 primary material demand from 80 to 30 gigatons (Gt) for cement and from 35 to 15 Gt for steel. Lowering floor space demand by 1 m per capita leads to global savings of 800-2500 megatons (Mt) of cement, 300-1000 Mt of steel, and 3-10 Gt CO-eq, depending on industry decarbonization and CE roll-out. Each additional Mt of structural timber leads to savings of 0.4-0.55 Mt of cement, 0.6-0.85 Mt of steel, and 0.8-1.8 Mt CO-eq of system-wide GHGE. CE reduces 2020-2050 cumulative GHGE by up to 44%, where the highest contribution comes from the CE strategies, that is, lower floorspace and lightweight buildings. Very low carbon emission trajectories are possible only when combining supply- and demand-side strategies. This article met the requirements for a gold-gold data openness badge described at http://jie.click/badges.
住宅和非住宅建筑是人类福祉的主要贡献者。与此同时,建筑造成了全球30%的终端能源使用、18%的温室气体排放(GHGE),以及约65%的物质积累。随着建筑的电气化和更高的能源效率,与材料相关的排放变得愈发重要。循环经济(CE)策略,以及木结构建筑,可以减少与材料相关的排放。我们使用存量-流量-服务关系的资源效率气候变化模型,为10个世界区域提供了一套全面的建筑存量转型情景,直至2060年,包括完整的循环经济范围以及木材密集型建筑。2020 - 2050年全球住宅建筑的累计新建量在1500亿至2800亿立方米之间,非住宅建筑为700亿至1200亿立方米。雄心勃勃的循环经济将2020 - 2050年水泥的累计一次材料需求从80亿吨降至30亿吨,钢铁从35亿吨降至15亿吨。人均建筑面积需求降低1平方米,根据行业脱碳和循环经济的推广情况,全球可节省800 - 2500百万吨水泥、300 - 1000百万吨钢铁以及3 - 10亿吨二氧化碳当量。每增加1百万吨结构木材,可节省0.4 - 0.55百万吨水泥、0.6 - 0.85百万吨钢铁以及0.8 - 1.8亿吨系统范围内的温室气体排放二氧化碳当量。循环经济可将2020 - 2050年累计温室气体排放最多减少44%,其中最大贡献来自循环经济策略,即更小的建筑面积和轻型建筑。只有将供需双方策略结合起来,才有可能实现极低的碳排放轨迹。本文符合http://jie.click/badges所描述的金-金数据开放徽章的要求。