Shang Yiqun, Zheng Minrui, Li Jiayang, Zheng Xinqi
School of Information Engineering, China University of Geosciences, Beijing, 100083, China.
Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China.
Sci Rep. 2025 Jan 15;15(1):1968. doi: 10.1038/s41598-024-84934-8.
Feature selection (FS) is a critical step in hyperspectral image (HSI) classification, essential for reducing data dimensionality while preserving classification accuracy. However, FS for HSIs remains an NP-hard challenge, as existing swarm intelligence and evolutionary algorithms (SIEAs) often suffer from limited exploration capabilities or susceptibility to local optima, particularly in high-dimensional scenarios. To address these challenges, we propose GWOGA, a novel hybrid algorithm that combines Grey Wolf Optimizer (GWO) and Genetic Algorithm (GA), aiming to achieve an effective balance between exploration and exploitation. The innovation of GWOGA lies in three core strategies: (1) chaotic map and Opposition-Based Learning (OBL) for uniformly distributed population initialization, enhancing diversity and mitigating premature convergence; (2) elite learning strategy to prioritize high-ranking solutions, strengthening the search hierarchy and efficiency; and (3) a hybrid optimization mechanism where GWO ensures rapid early-stage convergence, while GA refines global search in later stages to escape local optima. Experiments on three benchmark HSIs (i.e., Indian Pines, KSC, and Botswana) demonstrate that GWOGA outperforms state-of-the-art algorithms, achieving higher classification accuracy with fewer selected bands. The results highlight GWOGA's robustness, generalizability, and potential for real-world applications in HSI FS.
特征选择(FS)是高光谱图像(HSI)分类中的关键步骤,对于在保持分类精度的同时降低数据维度至关重要。然而,HSI的FS仍然是一个NP难问题,因为现有的群智能和进化算法(SIEA)往往存在探索能力有限或易陷入局部最优的问题,特别是在高维场景中。为应对这些挑战,我们提出了GWOGA,一种将灰狼优化器(GWO)和遗传算法(GA)相结合的新型混合算法,旨在在探索和利用之间实现有效平衡。GWOGA的创新之处在于三个核心策略:(1)混沌映射和基于对立学习(OBL)用于均匀分布的种群初始化,增强多样性并减轻早熟收敛;(2)精英学习策略优先考虑排名靠前的解,加强搜索层次结构和效率;(3)一种混合优化机制,其中GWO确保早期快速收敛,而GA在后期细化全局搜索以逃离局部最优。在三个基准HSI(即印度松、肯尼迪航天中心和博茨瓦纳)上的实验表明,GWOGA优于现有算法,在选择较少波段的情况下实现了更高的分类精度。结果突出了GWOGA在HSI FS中的鲁棒性、通用性和实际应用潜力。