Suppr超能文献

通过对抗学习和框融合进行跨域肺实质混浊检测。

Cross-domain lung opacity detection via adversarial learning and box fusion.

作者信息

Yao Jun, Guo Zhilin, Zhang Xin, Yan Nan, Wang Qiong, Yu Wei

机构信息

The Engineering & Technical College of Chengdu University of Technology, Xiaoba Road, Leshan, 614000, China.

China University of Mining and Technology, Daxue Road, Xuzhou, 221116, China.

出版信息

Sci Rep. 2024 Dec 28;14(1):31353. doi: 10.1038/s41598-024-82719-7.

Abstract

Many conditions, such as pulmonary edema, bleeding, atelectasis or collapse, lung cancer, and shadow formation after radiotherapy or surgical changes, cause Lung Opacity. An unsupervised cross-domain Lung Opacity detection method is proposed to help surgeons quickly locate Lung Opacity without additional manual annotations. This study proposes a novel method based on adversarial learning to detect Lung Opacity on chest X-rays. Focal loss, GIoU loss, and WBF (weighted boxes fusion) were used in training. We conducted extensive experiments on Chest X-rays from RSNA (Radiological Society of North America) and Vingroup Big Data Institute to verify the performance of cross-domain detection. The results indicate that our method has superior performance. The AP reached 34.30% and 36.55%, while the AR reached 74.11% and 75.91% in two cross-domain detection tasks. The visualization results show that the randomly selected samples were more accurately detected for Lung Opacity after applying our method. Compared with other excellent detection frameworks, our method achieved competitive results without additional annotations, making it suitable for assisting in Lung Opacity detection.

摘要

许多病症,如肺水肿、出血、肺不张或肺萎陷、肺癌以及放疗后或手术改变后的阴影形成等,都会导致肺部模糊。提出了一种无监督跨域肺部模糊检测方法,以帮助外科医生在无需额外手动标注的情况下快速定位肺部模糊。本研究提出了一种基于对抗学习的新颖方法来检测胸部X光片上的肺部模糊。在训练中使用了焦点损失、广义交并比损失和加权框融合(WBF)。我们对来自北美放射学会(RSNA)和Vin集团大数据研究所的胸部X光片进行了广泛实验,以验证跨域检测的性能。结果表明我们的方法具有卓越性能。在两项跨域检测任务中,平均精度(AP)分别达到34.30%和36.55%,而平均召回率(AR)分别达到74.11%和75.91%。可视化结果表明,应用我们的方法后,随机选择的样本对肺部模糊的检测更为准确。与其他优秀的检测框架相比,我们的方法无需额外标注就能取得有竞争力的结果,使其适用于辅助肺部模糊检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5549/11682102/ff96dcbaddf0/41598_2024_82719_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验