Zhao Yufei, Zhang Kai, Xiao Jiewen, Sun Kai, Yan Binghai
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
Department of Physics, University of Michigan, Ann Arbor, MI, USA.
Nat Commun. 2025 Jan 2;16(1):37. doi: 10.1038/s41467-024-55433-1.
Chirality-induced spin selectivity (CISS) generates giant spin polarization in transport through chiral molecules, paving the way for novel spintronic devices and enantiomer separation. Unlike conventional transport, CISS magnetoresistance (MR) violates Onsager's reciprocal relation, exhibiting significant resistance changes when reversing electrode magnetization at zero bias. However, its underlying mechanism remains unresolved. In this work, we propose that CISS MR originates from charge trapping that modifies the electron tunneling barrier and circumvents Onsager's relation, distinct from previous spin polarization-based models. Charge trapping is governed by the non-Hermitian skin effect, where dissipation leads to exponential wavefunction localization at the ferromagnet-chiral molecule interface. Reversing magnetization or chirality alters the localization direction, changing the occupation of impurity/defect states in the molecule (i.e., charge trapping) - a phenomenon we term magnetochiral charge pumping. Our theory explains why CISS MR can far exceed the ferromagnet spin polarization and why chiral molecules violate the reciprocal relation but chiral metals do not. Furthermore, it predicts exotic phenomena beyond the conventional CISS framework, including asymmetric MR induced by magnetic fields alone (without ferromagnetic electrodes), as confirmed by recent experiments. This work offers a deeper understanding of CISS and opens avenues for controlling electrostatic interactions in chemical and biological systems through the magnetochiral charge pumping.
手性诱导自旋选择性(CISS)在通过手性分子的输运过程中产生巨大的自旋极化,为新型自旋电子器件和对映体分离铺平了道路。与传统输运不同,CISS磁电阻(MR)违反了昂萨格互易关系,在零偏压下反转电极磁化时会表现出显著的电阻变化。然而,其潜在机制仍未得到解决。在这项工作中,我们提出CISS MR源于电荷俘获,电荷俘获会改变电子隧穿势垒并规避昂萨格关系,这与之前基于自旋极化的模型不同。电荷俘获受非厄米趋肤效应支配,其中耗散导致波函数在铁磁体 - 手性分子界面处指数局域化。反转磁化或手性会改变局域化方向,改变分子中杂质/缺陷态的占据情况(即电荷俘获)——我们将这一现象称为磁手性电荷泵浦。我们的理论解释了为什么CISS MR可以远远超过铁磁体的自旋极化,以及为什么手性分子违反互易关系而手性金属却不违反。此外,它预测了超出传统CISS框架的奇异现象,包括仅由磁场(无铁磁电极)诱导的不对称MR,这已被最近的实验所证实。这项工作为深入理解CISS提供了帮助,并为通过磁手性电荷泵浦控制化学和生物系统中的静电相互作用开辟了途径。