Cruz Daniel, Żółtowska Sonia, Savateev Oleksandr, Antonietti Markus, Giusto Paolo
Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry, Faradayweg 4-6D, 14195, Berlin, Germany.
Max Planck Institute of Colloids and Interfaces, Colloid Chemistry Department, Am Mühlenberg 1, 14476, Potsdam, Germany.
Nat Commun. 2025 Jan 3;16(1):374. doi: 10.1038/s41467-024-55518-x.
Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions. We show that the water adsorption and light illumination cause changes of the surface electron density, which activate the photocatalyst and enable the water splitting process. Our results reveal critical details on the photocatalytic mechanism, which proceeds through proton-coupled electron transfer, and provide key information to design more efficient photocatalyst for artificial photosynthesis.
碳氮化物家族的共价半导体是实现“人工光合作用”最有前景的体系之一,即利用合成材料将阳光作为能源,将水分解成其元素组成或把一氧化碳转化为有附加值的化学品。然而,表面相互作用和电子性质在反应机理中的作用仍然难以捉摸。在此,我们使用原位光谱技术,能够监测人工光合作用条件下碳氮化物的表面相互作用。我们表明,水吸附和光照会导致表面电子密度的变化,从而激活光催化剂并实现水分解过程。我们的结果揭示了光催化机理的关键细节,该机理通过质子耦合电子转移进行,并为设计更高效的人工光合作用光催化剂提供了关键信息。