Suppr超能文献

SpaRG:用于可泛化功能磁共振成像分析的稀疏重建图

SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis.

作者信息

González Camila, Miraoui Yanis, Fan Yiran, Adeli Ehsan, Pohl Kilian M

机构信息

Stanford University, Stanford, CA 94305, USA.

出版信息

Mach Learn Clin Neuroimaging (2024). 2025;15266:46-56. doi: 10.1007/978-3-031-78761-4_5. Epub 2024 Dec 6.

Abstract

Deep learning can help uncover patterns in resting-state functional Magnetic Resonance Imaging (rs-fMRI) associated with psychiatric disorders and personal traits. Yet the problem of interpreting deep learning findings is rarely more evident than in fMRI analyses, as the data is sensitive to scanning effects and inherently difficult to visualize. We propose a simple approach to mitigate these challenges grounded on sparsification and self-supervision. Instead of extracting post-hoc feature attributions to uncover functional connections that are important to the target task, we identify a small subset of highly informative connections during training and occlude the rest. To this end, we jointly train a (1) sparse input mask, (2) variational autoencoder (VAE), and (3) downstream classifier in an end-to-end fashion. While we need a portion of labeled samples to train the classifier, we optimize the sparse mask and VAE with unlabeled data from additional acquisition sites, retaining only the input features that generalize well. We evaluate our method - rsely econstructed raphs () - on the public ABIDE dataset for the task of sex classification, training with labeled cases from 18 sites and adapting the model to two additional out-of-distribution sites with a portion of unlabeled samples. For a relatively coarse parcellation (64 regions), SpaRG utilizes only 1% of the original connections while improving the classification accuracy across domains. Our code can be found at www.github.com/yanismiraoui/SpaRG.

摘要

深度学习有助于揭示静息态功能磁共振成像(rs-fMRI)中与精神疾病和个人特质相关的模式。然而,解释深度学习结果的问题在功能磁共振成像分析中最为明显,因为数据对扫描效应敏感且本质上难以可视化。我们提出了一种基于稀疏化和自我监督的简单方法来缓解这些挑战。我们不是在事后提取特征归因以揭示对目标任务重要的功能连接,而是在训练期间识别一小部分信息丰富的连接,并遮挡其余连接。为此,我们以端到端的方式联合训练(1)稀疏输入掩码、(2)变分自编码器(VAE)和(3)下游分类器。虽然我们需要一部分标记样本来训练分类器,但我们使用来自其他采集地点的未标记数据来优化稀疏掩码和VAE,只保留泛化良好的输入特征。我们在公共ABIDE数据集上针对性别分类任务评估了我们的方法——稀疏重建图(SpaRG),使用来自18个地点的标记病例进行训练,并使用一部分未标记样本使模型适应另外两个分布外的地点。对于相对粗略的脑区划分(64个区域),SpaRG仅使用原始连接的1%,同时提高了跨领域的分类准确率。我们的代码可在www.github.com/yanismiraoui/SpaRG上找到。

相似文献

1
SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis.SpaRG:用于可泛化功能磁共振成像分析的稀疏重建图
Mach Learn Clin Neuroimaging (2024). 2025;15266:46-56. doi: 10.1007/978-3-031-78761-4_5. Epub 2024 Dec 6.

本文引用的文献

5
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks.脑图基准:基于图神经网络的脑网络分析基准
IEEE Trans Med Imaging. 2023 Feb;42(2):493-506. doi: 10.1109/TMI.2022.3218745. Epub 2023 Feb 2.
8
Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis.用于静息态功能磁共振成像分析的时空图卷积
Med Image Comput Comput Assist Interv. 2020 Oct;12267:528-538. doi: 10.1007/978-3-030-59728-3_52. Epub 2020 Sep 29.
9
Graph Neural Network for Interpreting Task-fMRI Biomarkers.用于解释任务功能磁共振成像生物标志物的图神经网络
Med Image Comput Comput Assist Interv. 2019 Oct;11768:485-493. doi: 10.1007/978-3-030-32254-0_54. Epub 2019 Oct 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验