González Camila, Miraoui Yanis, Fan Yiran, Adeli Ehsan, Pohl Kilian M
Stanford University, Stanford, CA 94305, USA.
Mach Learn Clin Neuroimaging (2024). 2025;15266:46-56. doi: 10.1007/978-3-031-78761-4_5. Epub 2024 Dec 6.
Deep learning can help uncover patterns in resting-state functional Magnetic Resonance Imaging (rs-fMRI) associated with psychiatric disorders and personal traits. Yet the problem of interpreting deep learning findings is rarely more evident than in fMRI analyses, as the data is sensitive to scanning effects and inherently difficult to visualize. We propose a simple approach to mitigate these challenges grounded on sparsification and self-supervision. Instead of extracting post-hoc feature attributions to uncover functional connections that are important to the target task, we identify a small subset of highly informative connections during training and occlude the rest. To this end, we jointly train a (1) sparse input mask, (2) variational autoencoder (VAE), and (3) downstream classifier in an end-to-end fashion. While we need a portion of labeled samples to train the classifier, we optimize the sparse mask and VAE with unlabeled data from additional acquisition sites, retaining only the input features that generalize well. We evaluate our method - rsely econstructed raphs () - on the public ABIDE dataset for the task of sex classification, training with labeled cases from 18 sites and adapting the model to two additional out-of-distribution sites with a portion of unlabeled samples. For a relatively coarse parcellation (64 regions), SpaRG utilizes only 1% of the original connections while improving the classification accuracy across domains. Our code can be found at www.github.com/yanismiraoui/SpaRG.
深度学习有助于揭示静息态功能磁共振成像(rs-fMRI)中与精神疾病和个人特质相关的模式。然而,解释深度学习结果的问题在功能磁共振成像分析中最为明显,因为数据对扫描效应敏感且本质上难以可视化。我们提出了一种基于稀疏化和自我监督的简单方法来缓解这些挑战。我们不是在事后提取特征归因以揭示对目标任务重要的功能连接,而是在训练期间识别一小部分信息丰富的连接,并遮挡其余连接。为此,我们以端到端的方式联合训练(1)稀疏输入掩码、(2)变分自编码器(VAE)和(3)下游分类器。虽然我们需要一部分标记样本来训练分类器,但我们使用来自其他采集地点的未标记数据来优化稀疏掩码和VAE,只保留泛化良好的输入特征。我们在公共ABIDE数据集上针对性别分类任务评估了我们的方法——稀疏重建图(SpaRG),使用来自18个地点的标记病例进行训练,并使用一部分未标记样本使模型适应另外两个分布外的地点。对于相对粗略的脑区划分(64个区域),SpaRG仅使用原始连接的1%,同时提高了跨领域的分类准确率。我们的代码可在www.github.com/yanismiraoui/SpaRG上找到。