Suppr超能文献

基于知识蒸馏的可穿戴单导联心电图监测系统轻量级心律失常分类模型研究

Research on a Lightweight Arrhythmia Classification Model Based on Knowledge Distillation for Wearable Single-Lead ECG Monitoring Systems.

作者信息

An Xiang, Shi Shiwen, Wang Qian, Yu Yansuo, Liu Qiang

机构信息

Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.

出版信息

Sensors (Basel). 2024 Dec 10;24(24):7896. doi: 10.3390/s24247896.

Abstract

Arrhythmias are among the diseases with high mortality rates worldwide, causing millions of deaths each year. This underscores the importance of real-time electrocardiogram (ECG) monitoring for timely heart disease diagnosis and intervention. Deep learning models, trained on ECG signals across twelve or more leads, are the predominant approach for automated arrhythmia detection in the AI-assisted medical field. While these multi-lead ECG-based models perform well in automatic arrhythmia detection, their complexity often restricts their use on resource-constrained devices. In this paper, we propose an efficient, lightweight arrhythmia classification model using a knowledge distillation technique to train a student model from a teacher model, tailored for embedded intelligence in wearable devices. The results show that the student model achieves 96.32% accuracy, which is comparable to the teacher model, with a remarkable compression ratio that is 1242.58 times smaller, outperforming other lightweight models. Enabled by the proposed model, we developed a wearable ECG monitoring system based on the STM32F429 Discovery kit and ADS1292R chip, achieving real-time arrhythmia detection on small wearable devices.

摘要

心律失常是全球死亡率较高的疾病之一,每年导致数百万人死亡。这凸显了实时心电图(ECG)监测对于及时诊断和干预心脏病的重要性。在十二导联或更多导联的心电图信号上训练的深度学习模型,是人工智能辅助医疗领域中自动心律失常检测的主要方法。虽然这些基于多导联心电图的模型在自动心律失常检测方面表现良好,但其复杂性常常限制了它们在资源受限设备上的应用。在本文中,我们提出了一种高效、轻量级的心律失常分类模型,该模型使用知识蒸馏技术从教师模型训练学生模型,专为可穿戴设备中的嵌入式智能量身定制。结果表明,学生模型的准确率达到了96.32%,与教师模型相当,其压缩比显著小1242.58倍,性能优于其他轻量级模型。基于所提出的模型,我们开发了一种基于STM32F429 Discovery套件和ADS1292R芯片组的可穿戴式心电图监测系统,可在小型可穿戴设备上实现心律失常的实时检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d1/11679805/cb5d4fc194a9/sensors-24-07896-g001.jpg

相似文献

3
ECG signal classification in wearable devices based on compressed domain.
PLoS One. 2023 Apr 4;18(4):e0284008. doi: 10.1371/journal.pone.0284008. eCollection 2023.
4
Multi-label Arrhythmia Classification from Fixed-length Compressed ECG Segments in Real-time Wearable ECG Monitoring.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:580-583. doi: 10.1109/EMBC44109.2020.9176188.
5
Robust Heartbeat Classification for Wearable Single-Lead ECG via Extreme Gradient Boosting.
Sensors (Basel). 2021 Aug 5;21(16):5290. doi: 10.3390/s21165290.
6
Wearable ECG Device and Machine Learning for Heart Monitoring.
Sensors (Basel). 2024 Jun 28;24(13):4201. doi: 10.3390/s24134201.
7
MVKT-ECG: Efficient single-lead ECG classification for multi-label arrhythmia by multi-view knowledge transferring.
Comput Biol Med. 2023 Nov;166:107503. doi: 10.1016/j.compbiomed.2023.107503. Epub 2023 Sep 19.
8
A multi-scale convolutional LSTM-dense network for robust cardiac arrhythmia classification from ECG signals.
Comput Biol Med. 2025 Jun;191:110121. doi: 10.1016/j.compbiomed.2025.110121. Epub 2025 Apr 14.
9
A CNN Model for Cardiac Arrhythmias Classification Based on Individual ECG Signals.
Cardiovasc Eng Technol. 2022 Aug;13(4):548-557. doi: 10.1007/s13239-021-00599-8. Epub 2022 Jan 3.
10
Efficient Lightweight Multimodel Deep Fusion Based on ECG for Arrhythmia Classification.
Sensors (Basel). 2022 Dec 1;22(23):9347. doi: 10.3390/s22239347.

引用本文的文献

1
Lightweight Deep Learning Architecture for Multi-Lead ECG Arrhythmia Detection.
Sensors (Basel). 2025 Sep 5;25(17):5542. doi: 10.3390/s25175542.

本文引用的文献

1
Global burden of cardiovascular diseases: projections from 2025 to 2050.
Eur J Prev Cardiol. 2024 Sep 13. doi: 10.1093/eurjpc/zwae281.
3
Cloud-based healthcare framework for real-time anomaly detection and classification of 1-D ECG signals.
PLoS One. 2022 Dec 27;17(12):e0279305. doi: 10.1371/journal.pone.0279305. eCollection 2022.
4
Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records.
Comput Methods Programs Biomed. 2020 Dec;197:105740. doi: 10.1016/j.cmpb.2020.105740. Epub 2020 Sep 8.
5
Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review.
Comput Biol Med. 2020 Jul;122:103801. doi: 10.1016/j.compbiomed.2020.103801. Epub 2020 Jun 7.
7
An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset.
J Healthc Eng. 2019 Oct 13;2019:6320651. doi: 10.1155/2019/6320651. eCollection 2019.
8
ML-ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG.
Comput Methods Programs Biomed. 2020 Mar;185:105138. doi: 10.1016/j.cmpb.2019.105138. Epub 2019 Oct 17.
9
Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats.
Comput Biol Med. 2018 Nov 1;102:278-287. doi: 10.1016/j.compbiomed.2018.06.002. Epub 2018 Jun 5.
10
A deep convolutional neural network model to classify heartbeats.
Comput Biol Med. 2017 Oct 1;89:389-396. doi: 10.1016/j.compbiomed.2017.08.022. Epub 2017 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验