Wanner Julian, Kuhn Cuellar Luis, Rausch Luiselotte, W Berendzen Kenneth, Wanke Friederike, Gabernet Gisela, Harter Klaus, Nahnsen Sven
Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany.
Hasso Plattner Institute, University of Potsdam, Germany.
Quant Plant Biol. 2024 Dec 23;5:e12. doi: 10.1017/qpb.2024.11. eCollection 2024.
Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana. This bioinformatics pipeline performs automatic identification of developmental zones in root tissue images. This also includes apoplastic pH measurements, which is useful for modeling hormone signaling and cell physiological responses. We show that this nf-core standard-based pipeline successfully automates tissue zone segmentation and is both high-throughput and highly reproducible. In short, a deep-learning module deploys deterministically trained convolutional neural network models and augments the segmentation predictions with measures of prediction uncertainty and model interpretability, while aiming to facilitate result interpretation and verification by experienced plant biologists. We observed a high statistical similarity between the manually generated results and the output of the nf-root.
与细胞伸长相关的激素机制在植物的发育和生长中起着至关重要的作用。在此,我们报告了Nextflow-root(nf-root),这是一种用于基于深度学习分析拟南芥植物根组织荧光显微镜图像的新型最佳实践流程。这个生物信息学流程能够自动识别根组织图像中的发育区域。这还包括质外体pH测量,这对于模拟激素信号传导和细胞生理反应很有用。我们表明,这个基于nf-core标准的流程成功地实现了组织区域分割的自动化,并且具有高通量和高度可重复性。简而言之,一个深度学习模块部署了经过确定性训练的卷积神经网络模型,并用预测不确定性和模型可解释性的度量来增强分割预测,同时旨在促进有经验的植物生物学家对结果的解释和验证。我们观察到手动生成的结果与nf-root的输出之间具有高度的统计相似性。