Wang Mingcheng, Zhang Shuqiao, Li Rui, Zhao Qi
Institute for Advanced Study, Chengdu University, Chengdu, China.
Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China.
Front Plant Sci. 2024 Dec 24;15:1459533. doi: 10.3389/fpls.2024.1459533. eCollection 2024.
Medicinal plants are important sources of bioactive specialized metabolites with significant therapeutic potential. Advances in multi-omics have accelerated the understanding of specialized metabolite biosynthesis and regulation. Genomics, transcriptomics, proteomics, and metabolomics have each contributed new insights into biosynthetic gene clusters (BGCs), metabolic pathways, and stress responses. However, single-omics approaches often fail to fully address these complex processes. Integrated multi-omics provides a holistic perspective on key regulatory networks. High-throughput sequencing and emerging technologies like single-cell and spatial omics have deepened our understanding of cell-specific and spatially resolved biosynthetic dynamics. Despite these advancements, challenges remain in managing large datasets, standardizing protocols, accounting for the dynamic nature of specialized metabolism, and effectively applying synthetic biology for sustainable specialized metabolite production. This review highlights recent progress in omics-based research on medicinal plants, discusses available bioinformatics tools, and explores future research trends aimed at leveraging integrated multi-omics to improve the medicinal quality and sustainable utilization of plant resources.
药用植物是具有重要治疗潜力的生物活性特殊代谢产物的重要来源。多组学的进展加速了对特殊代谢产物生物合成和调控的理解。基因组学、转录组学、蛋白质组学和代谢组学各自为生物合成基因簇(BGCs)、代谢途径和应激反应提供了新的见解。然而,单一组学方法往往无法全面解决这些复杂过程。综合多组学提供了对关键调控网络的整体视角。高通量测序以及单细胞和空间组学等新兴技术加深了我们对细胞特异性和空间分辨生物合成动态的理解。尽管取得了这些进展,但在管理大型数据集、标准化方案、考虑特殊代谢的动态性质以及有效应用合成生物学实现可持续的特殊代谢产物生产方面仍存在挑战。本综述重点介绍了基于组学的药用植物研究的最新进展,讨论了可用的生物信息学工具,并探讨了旨在利用综合多组学提高药用植物质量和植物资源可持续利用的未来研究趋势。