Xie Yuxuan Richard, Castro Daniel C, Rubakhin Stanislav S, Trinklein Timothy J, Sweedler Jonathan V, Lam Fan
Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Nat Methods. 2024 Mar;21(3):521-530. doi: 10.1038/s41592-024-02171-3. Epub 2024 Feb 16.
Spatial omics technologies can reveal the molecular intricacy of the brain. While mass spectrometry imaging (MSI) provides spatial localization of compounds, comprehensive biochemical profiling at a brain-wide scale in three dimensions by MSI with single-cell resolution has not been achieved. We demonstrate complementary brain-wide and single-cell biochemical mapping using MEISTER, an integrative experimental and computational mass spectrometry (MS) framework. Our framework integrates a deep-learning-based reconstruction that accelerates high-mass-resolving MS by 15-fold, multimodal registration creating three-dimensional (3D) molecular distributions and a data integration method fitting cell-specific mass spectra to 3D datasets. We imaged detailed lipid profiles in tissues with millions of pixels and in large single-cell populations acquired from the rat brain. We identified region-specific lipid contents and cell-specific localizations of lipids depending on both cell subpopulations and anatomical origins of the cells. Our workflow establishes a blueprint for future development of multiscale technologies for biochemical characterization of the brain.
空间组学技术能够揭示大脑的分子复杂性。虽然质谱成像(MSI)可提供化合物的空间定位,但尚未实现通过具有单细胞分辨率的MSI在三维全脑尺度上进行全面的生化分析。我们展示了使用MEISTER(一种综合实验和计算质谱(MS)框架)进行全脑和单细胞生化图谱的互补绘制。我们的框架集成了基于深度学习的重建方法,可将高质量分辨率MS加速15倍,多模态配准创建三维(3D)分子分布,以及一种将细胞特异性质谱拟合到3D数据集的数据集成方法。我们对来自大鼠大脑的数百万像素的组织和大量单细胞群体中的详细脂质谱进行了成像。我们根据细胞亚群和细胞的解剖学起源确定了区域特异性脂质含量和脂质的细胞特异性定位。我们的工作流程为未来用于大脑生化特征分析的多尺度技术的发展建立了蓝图。