Suppr超能文献

SkinEHDLF:一种用于复杂系统中皮肤癌精确分类的混合深度学习方法。

SkinEHDLF a hybrid deep learning approach for accurate skin cancer classification in complex systems.

作者信息

Lilhore Umesh Kumar, Sharma Yogesh Kumar, Simaiya Sarita, Alroobaea Roobaea, Baqasah Abdullah M, Alsafyani Majed, Alhazmi Afnan

机构信息

Department of Computer Science and Engineering, School of Computing Science and Engineering, Galgotias University, Greater Noida, 203201, Uttar Pradesh, India.

Galgotias Multidisciplinary Research & Development Cell (G-MRDC), Galgotias University, Greater Noida, 203201, Uttar Pradesh, India.

出版信息

Sci Rep. 2025 Apr 28;15(1):14913. doi: 10.1038/s41598-025-98205-7.

Abstract

Skin cancer represents a significant global public health issue, and prompt and precise detection is essential for effective treatment. This study introduces SkinEHDLF, an innovative deep-learning model that enhances skin cancer classification. SkinEHDLF utilizes the advantages of several advanced models, i.e., ConvNeXt, EfficientNetV2, and Swin Transformer, while integrating an adaptive attention-based feature fusion mechanism to enhance the synthesis of acquired features. This hybrid methodology combines ConvNeXt's proficient feature extraction capabilities, EfficientNetV2's scalability, and Swin Transformer's long-range attention mechanisms, resulting in a highly accurate and dependable model. The adaptive attention mechanism dynamically optimizes feature fusion, enabling the model to focus on the most relevant information, enhancing accuracy and reducing false positives. We trained and evaluated SkinEHDLF using the ISIC 2024 dataset, which comprises 401,059 skin lesion images extracted from 3D total-body photography. The dataset is divided into three categories: melanoma, benign lesions, and noncancerous skin anomalies. The findings indicate the superiority of SkinEHDLF compared to current models. In binary skin cancer classification, SkinEHDLF surpassed baseline models, achieving an AUROC of 99.8% and an accuracy of 98.76%. The model attained 98.6% accuracy, 97.9% precision, 97.3% recall, and 99.7% AUROC across all lesion categories in multi-class classification. SkinEHDLF demonstrates a 7.9% enhancement in accuracy and a 28% decrease in false positives, outperforming leading models including ResNet-50, EfficientNet-B3, ViT-B16, and hybrid methodologies such as ResNet-50 + EfficientNet and ViT + CNN, thereby positioning itself as a more precise and reliable solution for automated skin cancer detection. These findings underscore SkinEHDLF's capacity to transform dermatological diagnostics by providing a scalable and accurate method for classifying skin cancer.

摘要

皮肤癌是一个重大的全球公共卫生问题,及时准确的检测对于有效治疗至关重要。本研究介绍了SkinEHDLF,这是一种创新的深度学习模型,可增强皮肤癌分类。SkinEHDLF利用了几种先进模型的优势,即ConvNeXt、EfficientNetV2和Swin Transformer,同时集成了基于自适应注意力的特征融合机制,以增强获取特征的合成。这种混合方法结合了ConvNeXt的高效特征提取能力、EfficientNetV2的可扩展性和Swin Transformer的远程注意力机制,从而产生了一个高度准确和可靠的模型。自适应注意力机制动态优化特征融合,使模型能够专注于最相关的信息,提高准确性并减少误报。我们使用ISIC 2024数据集对SkinEHDLF进行了训练和评估,该数据集包含从3D全身摄影中提取的401,059张皮肤病变图像。该数据集分为三类:黑色素瘤、良性病变和非癌性皮肤异常。研究结果表明SkinEHDLF优于当前模型。在二元皮肤癌分类中,SkinEHDLF超过了基线模型,AUROC达到99.8%,准确率达到98.76%。在多类分类中,该模型在所有病变类别中实现了98.6%的准确率、97.9%的精确率、97.3%的召回率和99.7%的AUROC。SkinEHDLF的准确率提高了7.9%,误报率降低了28%,优于包括ResNet-50、EfficientNet-B3、ViT-B16在内的领先模型以及ResNet-50+EfficientNet和ViT+CNN等混合方法,从而将自己定位为一种更精确、可靠的自动皮肤癌检测解决方案。这些发现强调了SkinEHDLF通过提供一种可扩展且准确的皮肤癌分类方法来改变皮肤病诊断的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/079d/12037884/479111f712eb/41598_2025_98205_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验