Górski Bartosz, Rein Jonas, Norris Samantha, Ji Yanxin, McEuen Paul L, Lin Song
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
Nature. 2025 Jan;637(8045):354-361. doi: 10.1038/s41586-024-08373-1. Epub 2025 Jan 8.
High-throughput experimentation (HTE) has accelerated academic and industrial chemical research in reaction development and drug discovery and has been broadly applied in many domains of organic chemistry. However, application of HTE in electrosynthesis-an enabling tool for chemical synthesis-has been limited by a dearth of suitable standardized reactors. Here we report the development of microelectronic devices, which are produced using standard nanofabrication techniques, to enable wireless electrosynthesis on the microlitre scale. These robust and inexpensive devices are powered by visible light and convert any traditional 96-well or 384-well plate into an electrochemical reactor. We validate the devices in oxidative, reductive and paired electrolysis and further apply them to achieve the library synthesis of biologically active compounds and accelerate the development of two electrosynthetic methodologies. We anticipate that, by simplifying the way electrochemical reactions are set up, this user-friendly solution will not only enhance the experience and efficiency of current practitioners but also substantially reduce the barrier for nonspecialists to enter the field of electrosynthesis, thus allowing the broader community of synthetic chemists to explore and benefit from new reactivities and synthetic strategies enabled by electrochemistry.
高通量实验(HTE)加速了学术和工业化学研究中的反应开发和药物发现,并已广泛应用于有机化学的许多领域。然而,HTE在电合成(一种化学合成的赋能工具)中的应用一直受到合适的标准化反应器匮乏的限制。在此,我们报告了微电子器件的开发,这些器件采用标准纳米制造技术生产,能够实现微升规模的无线电合成。这些坚固且廉价的器件由可见光供电,并将任何传统的96孔或384孔板转变为电化学反应器。我们在氧化、还原和成对电解中对这些器件进行了验证,并进一步应用它们来实现生物活性化合物的库合成,以及加速两种电合成方法的开发。我们预计,通过简化电化学反应的设置方式,这种用户友好型解决方案不仅将提升当前从业者的体验和效率,还将大幅降低非专业人员进入电合成领域的障碍,从而使更广泛的合成化学家群体能够探索并受益于电化学带来的新反应性和合成策略。