Suppr超能文献

低温简易型:一种基于可靠的自旋转移力矩磁阻随机存取存储器的用于内存计算的智能材料应用架构。

Cryo-SIMPLY: A Reliable STT-MRAM-Based Smart Material Implication Architecture for In-Memory Computing.

作者信息

Moposita Tatiana, Garzón Esteban, Teman Adam, Lanuzza Marco

机构信息

Department of Computer Engineering, Modeling, Electronics, and Systems Engineering, University of Calabria, 87036 Rende, Italy.

Emerging NanoScaled Integrated Circuits & Systems Labs, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel.

出版信息

Nanomaterials (Basel). 2024 Dec 25;15(1):9. doi: 10.3390/nano15010009.

Abstract

This paper presents Cryo-SIMPLY, a reliable smart material implication (SIMPLY) operating at cryogenic conditions (77 K). The assessment considers SIMPLY schemes based on spin-transfer torque magnetic random access memory (STT-MRAM) technology with single-barrier magnetic tunnel junction (SMTJ) and double-barrier magnetic tunnel junction (DMTJ). Our study relies on a temperature-aware macrospin-based Verilog-A compact model for MTJ devices and a 65 nm commercial process design kit (PDK) calibrated down to 77 K under silicon measurements. The DMTJ-based SIMPLY demonstrates a significant improvement in read margin at 77 K, overcoming the conventional SIMPLY scheme at room temperature (300 K) by approximately 2.3 X. When implementing logic operations with the SIMPLY scheme operating at 77 K, the DMTJ-based scheme assures energy savings of about 69%, as compared to its SMTJ-based counterpart operating at 77 K. Overall, our results prove that the SIMPLY scheme at cryogenic conditions is a promising solution for reliable and energy-efficient logic-in-memory (LIM) architectures.

摘要

本文介绍了低温智能材料蕴含(Cryo-SIMPLY),这是一种在低温条件(77K)下运行的可靠智能材料蕴含(SIMPLY)。评估考虑了基于自旋转移矩磁随机存取存储器(STT-MRAM)技术、采用单势垒磁隧道结(SMTJ)和双势垒磁隧道结(DMTJ)的SIMPLY方案。我们的研究依赖于用于MTJ器件的基于温度感知宏自旋的Verilog-A紧凑模型,以及在硅测量下校准至77K的65nm商用工艺设计套件(PDK)。基于DMTJ的SIMPLY在77K时的读取裕度有显著改善,比室温(300K)下的传统SIMPLY方案提高了约2.三倍。当使用在77K下运行的SIMPLY方案实现逻辑操作时,与在77K下运行的基于SMTJ的对应方案相比,基于DMTJ的方案可确保节省约69%的能量。总体而言,我们的结果证明,低温条件下的SIMPLY方案是实现可靠且节能的内存内逻辑(LIM)架构的一种有前途的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4887/11722062/1c4faeb332a9/nanomaterials-15-00009-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验