Huang Yan, Sahu Sunil Kumar, Liu Xin
College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
Plant Biotechnol J. 2025 Apr;23(4):1121-1132. doi: 10.1111/pbi.14570. Epub 2025 Jan 10.
Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations. Using 811 high-quality genomes, we detected 13 844 553 TE-induced structural variants (TE-SVs), providing unprecedented resolution in delineating recent TE activities. Our integrative analysis revealed a mutual evolutionary relationship between TEs and host genomes. On one hand, host genes and ncRNAs are involved in the transposition process, as evidenced by their colocalization and coactivation with TEs, and may play a role in chromatin regulation. On the other hand, TEs drive genetic innovation by promoting the duplication of host genes and inserting into regulatory regions. Moreover, genes influenced by active TEs are linked to plant growth, nutrient absorption, storage metabolism and environmental adaptation, aiding in crop domestication and adaptation. This TE dynamics atlas not only reveals evolutionary and functional features linked to transposition activity but also highlights the role of TEs in crop domestication and adaptation, paving the way for future exploration of TE-mediated genome evolution and crop improvement strategies.
转座元件(TEs)是基因组进化的重要驱动因素,然而它们近期在物种内部和物种之间的动态变化及影响,以及宿主基因和非编码RNA在转座过程中的作用,仍然难以捉摸。随着大规模泛基因组测序技术的进步和开放数据共享的发展,大规模比较基因组学研究已成为可能。在此,我们进行了完整的从头转座元件注释,并在119个物种和7个作物群体的310个植物基因组组装中鉴定出活跃的转座元件。利用811个高质量基因组,我们检测到13844553个由转座元件引起的结构变异(TE-SVs),为描绘近期转座元件活性提供了前所未有的分辨率。我们的综合分析揭示了转座元件与宿主基因组之间的相互进化关系。一方面,宿主基因和非编码RNA参与转座过程,这通过它们与转座元件的共定位和共激活得以证明,并且可能在染色质调控中发挥作用。另一方面,转座元件通过促进宿主基因的复制和插入调控区域来推动遗传创新。此外,受活跃转座元件影响的基因与植物生长、养分吸收、储存代谢和环境适应相关,有助于作物驯化和适应。这个转座元件动态图谱不仅揭示了与转座活性相关的进化和功能特征,还突出了转座元件在作物驯化和适应中的作用,为未来探索转座元件介导的基因组进化和作物改良策略铺平了道路。