Mecherques-Carini Malek, Albaladejo-Saura Mario, Esparza-Ros Francisco, Baglietto Nicolás, Vaquero-Cristóbal Raquel
Cátedra Internacional de Cineantropometría, UCAM Universidad Católica San Antonio de Murcia. Murcia, Murcia, Spain.
Faculty of Sport Sciences, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain.
J Transl Med. 2025 Jan 10;23(1):40. doi: 10.1186/s12967-024-06062-1.
Accurate body fat distribution assessment is essential for managing cardiovascular disease and metabolic disorders. Although several methods are available for segmental fat analysis, few studies have examined the validity of affordable methods such as Bioelectrical Impedance Analysis (BIA) against the reference method, Dual-Energy X-ray Absorptiometry (DXA). This study aimed to assess the validity of BIA as compared to DXA for segmental fat mass assessment, and to develop anthropometric multivariate regression models that offer a cost-effective alternative for health professionals in clinical and public health settings.
Cross-sectional study that included 264 young adults (161 males, mean age = 23.04 ± 5.61 years; and 103 females, mean age = 22.29 ± 5.98 years). Segmental fat mass was measured using DXA and BIA, and anthropometric measurements were collected following the ISAK protocol.
Significant differences were found between DXA and BIA for segmental fat mass (p < 0.001). Sex significantly influenced the results (p < 0.05), while BMI and hydration status had no significant impacts. The Bland-Altman analysis revealed significant differences (p < 0.001) between BIA and DXA for fat mass in the upper and lower limbs. Trunk fat mass also differed significantly in males and females (p < 0.001), except for the overall sample (p = 0.088). Anthropometric multivariate regression models showed a high predictive accuracy for both females (R²=0.766-0.910; p < 0.001) and males (R²=0.758-0.887; p < 0.001). Key predictors of segmental fat mass included body mass (r = 0.606-0.867; p < 0.001), skinfold thickness (r = 0.688-0.893; p < 0.001), and waist girth (r = 0.883 - 0.810; p < 0.001). Peripheral skinfolds were highly predictive for upper and lower limbs, while waist girth was relevant for trunk fat mass.
DXA and BIA are not interchangeable for segmental fat analysis due to the significant differences observed. However, the anthropometric multivariate regression models developed provide a cost-effective and reliable alternative for predicting segmental fat mass in clinical settings where DXA is unavailable.
Not applicable.
准确评估身体脂肪分布对于管理心血管疾病和代谢紊乱至关重要。尽管有几种方法可用于分段脂肪分析,但很少有研究检验像生物电阻抗分析(BIA)这种经济实惠的方法相对于参考方法双能X线吸收法(DXA)的有效性。本研究旨在评估BIA与DXA相比用于分段脂肪量评估的有效性,并建立人体测量多变量回归模型,为临床和公共卫生环境中的健康专业人员提供一种经济高效的替代方法。
横断面研究,纳入264名年轻人(161名男性,平均年龄 = 23.04 ± 5.61岁;103名女性,平均年龄 = 22.29 ± 5.98岁)。使用DXA和BIA测量分段脂肪量,并按照国际人体测量学会(ISAK)方案收集人体测量数据。
DXA和BIA在分段脂肪量方面存在显著差异(p < 0.001)。性别对结果有显著影响(p < 0.05),而体重指数(BMI)和水合状态无显著影响。Bland-Altman分析显示,BIA和DXA在上肢和下肢脂肪量方面存在显著差异(p < 0.001)。除总体样本外(p = 0.088),男性和女性的躯干脂肪量也存在显著差异(p < 0.001)。人体测量多变量回归模型对女性(R² = 0.766 - 0.910;p < 0.001)和男性(R² = 0.758 - 0.887;p < 0.001)均显示出较高的预测准确性。分段脂肪量的关键预测因素包括体重(r = 0.606 - 0.867;p < 0.001)、皮褶厚度(r = 0.688 - 0.893;p < 0.001)和腰围(r = 0.883 - 0.810;p < 0.001)。外周皮褶对上肢和下肢具有高度预测性,而腰围与躯干脂肪量相关。
由于观察到的显著差异,DXA和BIA在分段脂肪分析中不可互换。然而,所建立的人体测量多变量回归模型为在无法使用DXA的临床环境中预测分段脂肪量提供了一种经济高效且可靠的替代方法。
不适用。