Suppr超能文献

用于发现潜在联合用药风险的心血管药物与抗抑郁药之间的药物相互作用预测计算。

Drug-Drug interactions prediction calculations between cardiovascular drugs and antidepressants for discovering the potential co-medication risks.

作者信息

Zhou Tie Hua, Jin Tian Yu, Wang Xi Wei, Wang Ling

机构信息

Department of Computer Science and Technology, School of Computer Science, Northeast Electric Power University, Jilin, China.

出版信息

PLoS One. 2025 Jan 13;20(1):e0316021. doi: 10.1371/journal.pone.0316021. eCollection 2025.

Abstract

Predicting Drug-Drug Interactions (DDIs) enables cost reduction and time savings in the drug discovery process, while effectively screening and optimizing drugs. The intensification of societal aging and the increase in life stress have led to a growing number of patients suffering from both heart disease and depression. These patients often need to use cardiovascular drugs and antidepressants for polypharmacy, but potential DDIs may compromise treatment effectiveness and patient safety. To predict interactions between drugs used to treat these two diseases, we propose a method named Multi-Drug Features Learning with Drug Relation Regularization (MDFLDRR). First, we map feature vectors representing drugs in different feature spaces to the same. Second, we propose drug relation regularization to determine drug pair relationships in the interaction space. Experimental results demonstrate that MDFLDRR can be effectively applied to two DDI prediction goals: predicting unobserved interactions among drugs within the drug network and predicting interactions between drugs inside and outside the network. Publicly available evidence confirms that MDFLDRR can accurately identify DDIs between cardiovascular drugs and antidepressants. Lastly, by utilizing drug structure calculations, we ascertained the severity of newly discovered DDIs to mine the potential co-medication risks and aid in the smart management of pharmaceuticals.

摘要

预测药物相互作用(DDIs)能够在药物研发过程中降低成本并节省时间,同时有效地筛选和优化药物。社会老龄化加剧和生活压力增加导致越来越多的患者同时患有心脏病和抑郁症。这些患者通常需要联合使用心血管药物和抗抑郁药进行多药治疗,但潜在的药物相互作用可能会影响治疗效果并危及患者安全。为了预测用于治疗这两种疾病的药物之间的相互作用,我们提出了一种名为“基于药物关系正则化的多药物特征学习(MDFLDRR)”的方法。首先,我们将不同特征空间中表示药物的特征向量映射到同一空间。其次,我们提出药物关系正则化来确定相互作用空间中的药物对关系。实验结果表明,MDFLDRR可以有效地应用于两个药物相互作用预测目标:预测药物网络内未观察到的药物间相互作用以及预测网络内外药物之间的相互作用。公开可用的证据证实,MDFLDRR可以准确识别心血管药物和抗抑郁药之间的药物相互作用。最后,通过利用药物结构计算,我们确定了新发现的药物相互作用的严重程度,以挖掘潜在的联合用药风险并助力药物的智能管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22b5/11730380/9dec7b76b988/pone.0316021.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验