Department of Computer, School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
Int J Mol Sci. 2023 Feb 24;24(5):4500. doi: 10.3390/ijms24054500.
A norm in modern medicine is to prescribe polypharmacy to treat disease. The core concern with the co-administration of drugs is that it may produce adverse drug-drug interaction (DDI), which can cause unexpected bodily injury. Therefore, it is essential to identify potential DDI. Most existing methods in silico only judge whether two drugs interact, ignoring the importance of interaction events to study the mechanism implied in combination drugs. In this work, we propose a deep learning framework named MSEDDI that comprehensively considers multi-scale embedding representations of the drug for predicting drug-drug interaction events. In MSEDDI, we design three-channel networks to process biomedical network-based knowledge graph embedding, SMILES sequence-based notation embedding, and molecular graph-based chemical structure embedding, respectively. Finally, we fuse three heterogeneous features from channel outputs through a self-attention mechanism and feed them to the linear layer predictor. In the experimental section, we evaluate the performance of all methods on two different prediction tasks on two datasets. The results show that MSEDDI outperforms other state-of-the-art baselines. Moreover, we also reveal the stable performance of our model in a broader sample set via case studies.
在现代医学中,开多种药物来治疗疾病是一种常规做法。药物联合使用的核心问题是可能会产生药物相互作用(DDI),这可能会导致身体的意外损伤。因此,识别潜在的药物相互作用是至关重要的。现有的大多数基于计算机的方法仅判断两种药物是否相互作用,而忽略了药物相互作用事件对研究组合药物中隐含机制的重要性。在这项工作中,我们提出了一个名为 MSEDDI 的深度学习框架,该框架全面考虑了药物的多尺度嵌入表示,用于预测药物相互作用事件。在 MSEDDI 中,我们设计了三个通道网络,分别处理基于生物医学网络的知识图嵌入、基于 SMILES 序列的符号嵌入和基于分子图的化学结构嵌入。最后,我们通过自注意力机制融合通道输出的三个异质特征,并将它们输入到线性层预测器中。在实验部分,我们在两个数据集上的两个不同预测任务上评估了所有方法的性能。结果表明,MSEDDI 优于其他最先进的基线方法。此外,我们还通过案例研究揭示了我们的模型在更广泛的样本集上的稳定性能。