Alves Décio, Mendonça Fábio, Mostafa Sheikh Shanawaz, Freitas Diogo, Pestana João, Vieira Dinarte, Radeta Marko, Morgado-Dias Fernando
University of Madeira, Funchal, Portugal.
Interactive Technologies Institute (ITI/LARSyS), Funchal, Portugal.
PLoS One. 2025 Jan 14;20(1):e0316548. doi: 10.1371/journal.pone.0316548. eCollection 2025.
This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons. For the most challenging task, the 30-minute ahead forecasts, the model achieved a wind speed Mean Absolute Error (MAE) of 0.78 m/s and a wind direction MAE of 33.06°. Furthermore, the use of Gaussian noise concatenation to both input and label training data yielded the most consistent results. A case study further validated the model's efficacy, with MAE values below 0.43 m/s for wind speed and between 33.93° and 35.03° for wind direction across different forecast horizons. This approach shows that combining strategically deployed sensor networks with machine learning techniques offers improvements in wind nowcasting for airports in complex environments, possibly enhancing operational efficiency and safety.
本研究介绍了一种为马德拉国际机场航空应用设计的高分辨率风临近预报模型,该机场以其复杂的风型而闻名。通过使用来自六个气象站网络的数据和深度学习技术,所生成的模型能够以1分钟的时间分辨率提前30分钟预测风速和风向。优化后的架构在所有预报时效内都表现出强大的预测性能。对于最具挑战性的任务,即提前30分钟的预报,该模型的风速平均绝对误差(MAE)为0.78米/秒,风向MAE为33.06°。此外,对输入和标签训练数据都使用高斯噪声拼接产生了最一致的结果。一个案例研究进一步验证了该模型的有效性,在不同预报时效内,风速的MAE值低于0.43米/秒,风向的MAE值在33.93°至35.03°之间。这种方法表明,将战略部署的传感器网络与机器学习技术相结合,可为复杂环境中的机场风临近预报带来改进,有可能提高运营效率和安全性。