Suppr超能文献

用于多主元合金相预测的量子与复值混合网络。

Quantum and complex-valued hybrid networks for multi-principal element alloys phase prediction.

作者信息

Li Shaochun, Sun Yutong, Xiao Lu, Long Weimin, Wang Gang, Cui Junzhi, Ren Jingli

机构信息

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China.

Institute of Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

iScience. 2024 Dec 12;28(1):111582. doi: 10.1016/j.isci.2024.111582. eCollection 2025 Jan 17.

Abstract

This study introduces a hybrid network model for phase classification, integrating quantum networks and complex-valued neural networks. This architecture uses elemental composition as its only input, eliminating complex feature engineering. Parameterized quantum networks handle sparse elemental data and convert data from real to complex domains, increasing information dimensionality. Complex-valued neural networks process data in the complex domain, significantly reducing information loss during transitions. The experimental results show that the hybrid model achieves a phase classification accuracy of 94.93%, outperforming the best machine learning model by 2.27% and the quantum model by 8.67%. Precision, recall, and F1-score are also excellent at 0.9494, 0.9493, and 0.9500, respectively. Additional tests on phase transitions in alloys confirm the model's robust generalization, identifying transition thresholds at 0.46 and 0.88, closely matching the 0.45 and 0.88 reported in related studies.

摘要

本研究引入了一种用于相分类的混合网络模型,它集成了量子网络和复值神经网络。这种架构仅使用元素组成作为输入,无需复杂的特征工程。参数化量子网络处理稀疏的元素数据,并将数据从实域转换到复域,增加信息维度。复值神经网络在复域中处理数据,显著减少了转换过程中的信息损失。实验结果表明,该混合模型实现了94.93%的相分类准确率,比最佳机器学习模型高出2.27%,比量子模型高出8.67%。精确率、召回率和F1分数也分别出色地达到了0.9494、0.9493和0.9500。对合金相变的额外测试证实了该模型强大的泛化能力,识别出的转变阈值为0.46和0.88,与相关研究报告的0.45和0.88非常接近。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8467/11732119/efb2a010138c/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验