Yuan Meng, Feng Jiangang, Li Hui, Gao Hanfei, Qiu Yuchen, Jiang Lei, Wu Yuchen
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
Nat Nanotechnol. 2025 Mar;20(3):381-387. doi: 10.1038/s41565-024-01841-9. Epub 2025 Jan 15.
The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices. Continuous single-crystalline perovskite films with eliminated grain boundaries, stable surfaces and optical homogeneity are highly demanded for micro-LEDs, but their growth and device integration remain challenging. Here we realize the remote-epitaxy growth of crystalline perovskite films, enabling their seamless integration into micro-LEDs with a pixel size down to 4 μm. By incorporating a subnanometre graphene interlayer, we enable remote epitaxy and transfer of perovskites with relaxed strain. These micro-LEDs exhibit a high electroluminescence efficiency of 16.7% and a high brightness of 4.0 × 10 cd m. Such high performance stems from suppressed defects and efficient carrier transport in epitaxial perovskites with high crystallinity, relaxed strain and hundreds-of-nanometres thickness. The free-standing perovskites can be integrated with commercial electronic planes for independent and dynamic control of each pixel, thus facilitating both static image and video display. With these findings, we envision on-chip perovskite photonic sources such as ultracompact lasers and ultrafast LEDs.
发光二极管(LED)的小型化对于超高分辨率显示器至关重要。金属卤化物钙钛矿有望实现高效发光、长程载流子传输以及用于明亮微尺度LED(微型LED)显示器的可扩展制造。然而,发光空间分布不均匀且在光刻下表面不稳定的薄膜钙钛矿与微型LED器件不兼容。微型LED对具有消除晶界、稳定表面和光学均匀性的连续单晶钙钛矿薄膜有很高需求,但它们的生长和器件集成仍然具有挑战性。在此,我们实现了晶体钙钛矿薄膜的远程外延生长,使其能够无缝集成到像素尺寸低至4μm的微型LED中。通过引入亚纳米石墨烯中间层,我们实现了钙钛矿的远程外延和具有弛豫应变的转移。这些微型LED表现出16.7%的高电致发光效率和4.0×10 cd m的高亮度。如此高性能源于具有高结晶度、弛豫应变和数百纳米厚度的外延钙钛矿中缺陷的抑制和载流子的高效传输。独立的钙钛矿可以与商业电子平面集成,以对每个像素进行独立和动态控制,从而便于静态图像和视频显示。基于这些发现,我们设想了片上钙钛矿光子源,如超紧凑型激光器和超快LED。