Suppr超能文献

一种柔性单晶钙钛矿器件的制造工艺。

A fabrication process for flexible single-crystal perovskite devices.

机构信息

Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.

Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA.

出版信息

Nature. 2020 Jul;583(7818):790-795. doi: 10.1038/s41586-020-2526-z. Epub 2020 Jul 29.

Abstract

Organic-inorganic hybrid perovskites have electronic and optoelectronic properties that make them appealing in many device applications. Although many approaches focus on polycrystalline materials, single-crystal hybrid perovskites show improved carrier transport and enhanced stability over their polycrystalline counterparts, due to their orientation-dependent transport behaviour and lower defect concentrations. However, the fabrication of single-crystal hybrid perovskites, and controlling their morphology and composition, are challenging. Here we report a solution-based lithography-assisted epitaxial-growth-and-transfer method for fabricating single-crystal hybrid perovskites on arbitrary substrates, with precise control of their thickness (from about 600 nanometres to about 100 micrometres), area (continuous thin films up to about 5.5 centimetres by 5.5 centimetres), and composition gradient in the thickness direction (for example, from methylammonium lead iodide, MAPbI, to MAPbSnI). The transferred single-crystal hybrid perovskites are of comparable quality to those directly grown on epitaxial substrates, and are mechanically flexible depending on the thickness. Lead-tin gradient alloying allows the formation of a graded electronic bandgap, which increases the carrier mobility and impedes carrier recombination. Devices based on these single-crystal hybrid perovskites show not only high stability against various degradation factors but also good performance (for example, solar cells based on lead-tin-gradient structures with an average efficiency of 18.77 per cent).

摘要

有机-无机杂化钙钛矿具有电子和光电特性,使其在许多器件应用中具有吸引力。尽管许多方法侧重于多晶材料,但单晶杂化钙钛矿由于其与取向相关的输运行为和较低的缺陷浓度,表现出改善的载流子输运和增强的稳定性,优于其多晶对应物。然而,单晶杂化钙钛矿的制造以及控制其形态和组成具有挑战性。在这里,我们报告了一种基于溶液的光刻辅助外延生长和转移方法,用于在任意衬底上制造单晶杂化钙钛矿,可精确控制其厚度(约 600 纳米至约 100 微米)、面积(连续薄膜可达约 5.5 厘米乘 5.5 厘米)和厚度方向上的组成梯度(例如,从碘化甲脒铅,MAPbI,到碘化甲脒锡铅,MAPbSnI)。转移的单晶杂化钙钛矿与直接在外延衬底上生长的单晶杂化钙钛矿质量相当,并且根据厚度的不同具有机械柔韧性。铅锡梯度合金化允许形成分级电子能带隙,从而提高载流子迁移率并阻碍载流子复合。基于这些单晶杂化钙钛矿的器件不仅具有对各种降解因素的高稳定性,而且具有良好的性能(例如,基于铅锡梯度结构的太阳能电池,平均效率为 18.77%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验