Suppr超能文献

用于锂离子电池的混合相增强型高速铌酸铜阳极。

Mixed-phase enabled high-rate copper niobate anodes for lithium-ion batteries.

作者信息

Jager B Maarten, Kortekaas Luuk, Ten Elshof Johan E, Bos Jan-Willem G, Tromp Moniek, Huijben Mark

机构信息

Zernike Institute for Advanced Materials, University of Groningen 9747 AG Groningen Netherlands

MESA+ Institute for Nanotechnology, University of Twente 7500 AE Enschede Netherlands

出版信息

J Mater Chem A Mater. 2025 Jan 8;13(7):5130-5142. doi: 10.1039/d4ta07548j. eCollection 2025 Feb 12.

Abstract

The advancement of rapid-response grid energy storage systems and the widespread adoption of electric vehicles are significantly hindered by the charging times and energy densities associated with current lithium-ion battery technology. In state-of-the-art lithium-ion batteries, graphite is employed as the standard negative electrode material. However, graphite suffers from polarization and deteriorating side-reactions at the high currents needed for fast charging. Transition metal-oxide anodes are attractive alternatives due to their enhanced power density. However, often these anodes make use of toxic or scarce elements, significantly limiting their future potential. In this work, we propose a new, facile solid-state synthesis method to obtain non-toxic, abundant, mixed-phase copper niobate (Cu Nb O ) anodes for lithium-ion batteries. The material consists of various phases working synergistically to deliver high electrochemical capacities at exceptional cycling rates (167 mA h g at 1C, 95 mA h g at 10C, 65 mA h g at 60C and 37 mA h g at 250C), large pseudocapacitive response (up to 90%), and high Li diffusion coefficient (1.8 × 10 cm s), at a stable capacity retention (99.98%) between cycles. Compared to graphite, at a comparable energy density (470 W h L), the composite material exhibits a 70 times higher power density (27 000 W L). These results provide a new perspective on the role of non-toxic and abundant elements for realizing ultrafast anode materials for future energy storage devices.

摘要

快速响应的电网储能系统的发展以及电动汽车的广泛应用,受到了与当前锂离子电池技术相关的充电时间和能量密度的显著阻碍。在最先进的锂离子电池中,石墨被用作标准负极材料。然而,在快速充电所需的高电流下,石墨会出现极化现象以及副反应恶化的问题。过渡金属氧化物阳极因其提高的功率密度而成为有吸引力的替代品。然而,这些阳极通常使用有毒或稀缺元素,这极大地限制了它们未来的潜力。在这项工作中,我们提出了一种新的、简便的固态合成方法,以获得用于锂离子电池的无毒、丰富的混合相铌酸铜(Cu Nb O )阳极。该材料由各种协同工作的相组成,能在出色的循环速率下(1C时为167 mA h g,10C时为95 mA h g,60C时为65 mA h g,250C时为37 mA h g)提供高电化学容量、大的赝电容响应(高达90%)以及高的锂扩散系数(1.8×10 cm s),且在循环之间具有稳定的容量保持率(99.98%)。与石墨相比,在可比的能量密度(470 W h L)下,该复合材料的功率密度高出70倍(27 000 W L)。这些结果为无毒且丰富的元素在实现未来储能设备超快阳极材料方面的作用提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/11737045/1409f467ed8c/d4ta07548j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验