School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China; Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong Province, China.
School of Computer Science Engineering, South China University of Technology, Guangzhou, Guangdong Province, China.
Acad Radiol. 2020 Nov;27(11):e254-e262. doi: 10.1016/j.acra.2019.12.007. Epub 2020 Jan 23.
We assess the performance of a model combining a deep convolutional neural network and a hand-crafted radiomics signature for predicting KRAS status in patients with colorectal cancer (CRC).
The primary cohort consisted of 279 patients with clinicopathologically confirmed CRC between April 2011 and April 2015. Portal venous phase computed tomographic images were analyzed to extract traditional hand-crafted radiomics features as well as deep learning features. A Wilcoxon rank sum test, the minimum redundancy maximum relevance algorithm, and multivariable logistic regression analysis were used to select features and build a radiomics signature. A combined model was then developed using multivariable logistic regression analysis. An independent validation cohort of 119 patients from May 2015 to April 2016 was used to confirm the combined model's predictive performance.
The C-index of hand-crafted radiomics signature's discriminative ability was 0.719 (95% confidence interval, CI: 0.658-0.776) for the primary cohort and 0.720 (95% CI: 0.625-0.813) for the validation cohort. The C-index of the deep radiomics signature's discriminative ability was 0.754 (95% CI: 0.696-0.813) for the primary cohort and 0.786 (95% CI: 0.702-0.863) for the validation cohort. The combined model, which merged the hand-crafted radiomics features and deep radiomics features, achieve a C-index of 0.815 (95% CI: 0.766-0.868) for the primary cohort and 0.832 (95% CI: 0.762-0.905) for the validation cohort.
This study presents a model that incorporates the hand-crafted and deep radiomics signature, which can be used for individualized preoperative prediction of KRAS mutations in patients with CRC.
我们评估了一种将深度卷积神经网络与手工制作的放射组学特征相结合的模型,用于预测结直肠癌(CRC)患者 KRAS 状态的性能。
主要队列包括 2011 年 4 月至 2015 年 4 月期间经临床病理证实的 279 例 CRC 患者。分析门静脉期 CT 图像以提取传统手工放射组学特征和深度学习特征。使用 Wilcoxon 秩和检验、最小冗余最大相关性算法和多变量逻辑回归分析来选择特征并构建放射组学特征。然后使用多变量逻辑回归分析建立联合模型。使用 2015 年 5 月至 2016 年 4 月的 119 例独立验证队列来验证联合模型的预测性能。
手工制作的放射组学特征判别能力的 C 指数在主要队列中为 0.719(95%置信区间,CI:0.658-0.776),在验证队列中为 0.720(95%CI:0.625-0.813)。深度放射组学特征判别能力的 C 指数在主要队列中为 0.754(95%CI:0.696-0.813),在验证队列中为 0.786(95%CI:0.702-0.863)。合并手工制作的放射组学特征和深度放射组学特征的联合模型在主要队列中的 C 指数为 0.815(95%CI:0.766-0.868),在验证队列中的 C 指数为 0.832(95%CI:0.762-0.905)。
本研究提出了一种结合手工和深度放射组学特征的模型,可用于预测 CRC 患者 KRAS 突变的个体化术前预测。