Suppr超能文献

监督机器学习和性状双标图基因型分析作为筛选富含植物化学物质基因型的有前景的方法。

Supervised machine learning and genotype by trait biplot as promising approaches for selection of phytochemically enriched genotypes.

作者信息

Maleki Hamid Hatami, Darvishzadeh Reza, Alijanpour Ahmad, Seyfari Yousef

机构信息

Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.

Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.

出版信息

Heliyon. 2024 Dec 29;11(1):e41548. doi: 10.1016/j.heliyon.2024.e41548. eCollection 2025 Jan 15.

Abstract

Sumac is considered as a medicinal and industrial plant. Climate change threats natural ecosystems and hence, evaluation of sumac's genetic diversity, identification of superior genotypes, and conservation of such materials is important. In this study, 5 wild populations of sumac were investigated. Fruits of 75 sumac genotypes (15 genotype per population) were analyzed using HPLC-LC/MS-MS method. Likewise, genomic DNA of 75 genotypes were fingerprinted using 18 ISSR primers. Analysis of variance revealed significant genetic variability among studied populations of sumac considering malic acid, malic acid hexoside 2.71, malic acid hexoside 6.11, coumaric acid, ellagic acid11.49. Malic acid was identified as phytochemical marker in sumac fruit which can be implemented for screening sumac genotypes even from the same population. Genotype by trait analysis revealed V6, V10, D10, D14, A1, A14, K3, K15, N10, and N11 as top-performing genotypes (winners) which possessed the majority of phytochemical constituents in highest value. Here, the identified phytochemically superior sumac group was effectively distinguished from the inferior sumac group using ISSRs information via supervised machine learning. By using 13 feature selection algorithms, ISSR loci (U823) L1, (U835) L1, (U801) L1, (U816) L2, (U816) L4, (U835) L4, (U854) L1, and (U835) L9 were identified as functional markers which could predict phytochemical response of sumac germplasm. In conclusion, there is vast range of phytochemically divergent sumac genotypes in its natural habitats that could effectively recognized in any season by merging artificial intelligence with genomic information.

摘要

漆树被视为一种药用和工业植物。气候变化威胁着自然生态系统,因此,评估漆树的遗传多样性、鉴定优良基因型以及保护这些材料非常重要。在本研究中,对5个野生漆树种群进行了调查。使用HPLC-LC/MS-MS方法分析了75个漆树基因型(每个种群15个基因型)的果实。同样,使用18个ISSR引物对75个基因型的基因组DNA进行了指纹识别。方差分析显示,考虑到苹果酸、苹果酸己糖苷2.71、苹果酸己糖苷6.11、香豆酸、鞣花酸11.49,在研究的漆树种群之间存在显著的遗传变异。苹果酸被确定为漆树果实中的植物化学标记物,即使来自同一种群的漆树基因型也可用于筛选。基因型与性状分析显示,V6、V10、D10、D14、A1、A14、K3、K15、N10和N11是表现最佳的基因型(优胜者),它们拥有大多数含量最高的植物化学成分。在这里,通过监督机器学习,利用ISSR信息有效地将鉴定出的植物化学优良漆树组与劣质漆树组区分开来。通过使用13种特征选择算法,ISSR位点(U823)L1、(U835)L1、(U801)L1、(U816)L2、(U816)L4、(U835)L4、(U854)L1和(U835)L9被确定为功能标记物,可预测漆树种质的植物化学响应。总之,在其自然栖息地中存在大量植物化学上不同的漆树基因型,通过将人工智能与基因组信息相结合,可在任何季节有效地识别这些基因型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/029c/11745794/95019cb74287/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验