Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, UK.
Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
Biomed Res Int. 2021 Feb 9;2021:1-8. doi: 10.1155/2021/4014797.
Vision loss caused by inherited retinal degeneration affects millions of people worldwide, and clinical trials involving gene supplementation strategies are ongoing for select forms of the disease. When early therapeutic intervention is not possible and patients suffer complete loss of their photoreceptor cells, there is an opportunity for vision restoration techniques, including optogenetic therapy. This therapy provides expression of light-sensitive molecules to surviving cell types of the retina, enabling light perception through residual neuronal pathways. To this end, the bipolar cells make an obvious optogenetic target to enable upstream processing of visual signal in the retina. However, while AAV transduction of the bipolar cells has been described, the expression of human opsins in these cell types within a model of retinal degeneration () has been less successful. In this study, we have expanded the optogenetic toolkit and shown successful expression of human rhodopsin driven by an ON-bipolar cell promoter () in the mouse model using modified AAV capsids (AAV2.4YF, AAV8.BP2, and AAV2.7m8) delivered via intraocular injection. We also show the first presentation of ectopic expression of human cone opsin in the bipolar cells of mice. These data provide evidence of an expansion of the optogenetic toolkit with the potential to restore useful visual function, setting the stage for future trials in human patients.
遗传性视网膜变性导致的视力丧失影响着全球数百万人,针对特定形式的疾病,正在进行涉及基因补充策略的临床试验。当早期治疗干预不可行,患者的光感受器细胞完全丧失时,就有机会采用视力恢复技术,包括光遗传学疗法。这种疗法为视网膜的存活细胞类型提供光敏分子的表达,通过残留的神经元通路实现光感。为此,双极细胞成为使视网膜内视觉信号进行上游处理的明显光遗传学靶标。然而,尽管已经描述了 AAV 对双极细胞的转导,但在视网膜变性模型中,这些细胞类型中人视蛋白的表达不太成功。在这项研究中,我们扩展了光遗传学工具包,并使用经修饰的 AAV 衣壳(AAV2.4YF、AAV8.BP2 和 AAV2.7m8)通过眼内注射,在 小鼠模型中展示了由 ON-双极细胞启动子()驱动的人视蛋白的成功表达。我们还展示了在 小鼠的双极细胞中异位表达人视锥细胞视蛋白的首次呈现。这些数据提供了光遗传学工具包扩展的证据,有可能恢复有用的视觉功能,为未来在人类患者中的试验奠定了基础。