Suppr超能文献

前沿人工智能(AI)建模在分散式临床机器学习(ML)中用于生成卵巢癌(OC)和卵巢淋巴瘤(OL)的合成医学数据(SMD)的概述。

An overview of the use of cutting-edge artificial intelligence (AI) modeling to produce synthetic medical data (SMD) in decentralized clinical machine learning (ML) for ovarian cancer(OC) and ovarian lymphoma(OL).

作者信息

Donatello Diana

机构信息

, Costa Contina street n. 19, 66054, Vasto, Chieti, Italy.

出版信息

J Ultrasound. 2025 Jan 22. doi: 10.1007/s40477-025-00983-3.

Abstract

AIM

o point out how novel analysis tools of AI can make sense of the data acquired during OL and OC diagnosis and treatment in an effort to help improve and standardize the patient pathway for these disease.

MATERIAL AND METHODS

ultilizing programmed detection of heterogeneus OL and OC habitats through radiomics and correlate to imaging based tumor grading plus a literature review.

RESULTS

new analysis pipelines have been generated for integrating imaging and patient demographic data and identify new multi-omic biomarkers of response prediction and tumour grading using cutting-edge artificial intelligence (AI) in OL and OC.

DESCRIPTION

deline the main AI methods used in OL and OC that we can try to standardize in the clinical radiological and medical practice to ameliorate the patients diagnosis and theraphy.

CONCLUSION

through new AI methods it's possible to combine research into a SwarmDeepSurv, generate new data flow channels, create medical imaging data channels of OL and OC using AI and identify new biomarkers of OL and OC. .

摘要

目的

指出人工智能的新型分析工具如何理解在口腔白斑(OL)和口腔癌(OC)诊断与治疗过程中获取的数据,以帮助改善和规范这些疾病的患者诊疗路径。

材料与方法

通过放射组学对OL和OC异质栖息地进行程序化检测,并与基于成像的肿瘤分级相关联,同时进行文献综述。

结果

已生成新的分析流程,用于整合成像和患者人口统计学数据,并使用前沿人工智能(AI)识别OL和OC中反应预测和肿瘤分级的新多组学生物标志物。

描述

阐述在OL和OC中使用的主要AI方法,我们可尝试在临床放射学和医学实践中使其标准化,以改善患者的诊断和治疗。

结论

通过新的AI方法,有可能将研究整合到SwarmDeepSurv中,生成新的数据流通道,利用AI创建OL和OC的医学成像数据通道,并识别OL和OC的新生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验