文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于血管内外周神经刺激的无线毫微磁电植入物。

A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves.

机构信息

Department of Bioengineering, Rice University, Houston, TX, USA.

Department of Neurosurgery, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA.

出版信息

Nat Biomed Eng. 2022 Jun;6(6):706-716. doi: 10.1038/s41551-022-00873-7. Epub 2022 Mar 31.


DOI:10.1038/s41551-022-00873-7
PMID:35361934
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9213237/
Abstract

Implantable bioelectronic devices for the simulation of peripheral nerves could be used to treat disorders that are resistant to traditional pharmacological therapies. However, for many nerve targets, this requires invasive surgeries and the implantation of bulky devices (about a few centimetres in at least one dimension). Here we report the design and in vivo proof-of-concept testing of an endovascular wireless and battery-free millimetric implant for the stimulation of specific peripheral nerves that are difficult to reach via traditional surgeries. The device can be delivered through a percutaneous catheter and leverages magnetoelectric materials to receive data and power through tissue via a digitally programmable 1 mm × 0.8 mm system-on-a-chip. Implantation of the device directly on top of the sciatic nerve in rats and near a femoral artery in pigs (with a stimulation lead introduced into a blood vessel through a catheter) allowed for wireless stimulation of the animals' sciatic and femoral nerves. Minimally invasive magnetoelectric implants may allow for the stimulation of nerves without the need for open surgery or the implantation of battery-powered pulse generators.

摘要

可植入式生物电子设备可用于模拟外周神经,从而治疗对传统药物疗法有抗性的疾病。然而,对于许多神经靶点,这需要进行侵入性手术和植入体积庞大的设备(至少在一个维度上约几厘米)。在这里,我们报告了一种经血管的、无线和无电池的毫米级植入物的设计和体内初步概念验证测试,该植入物用于刺激通过传统手术难以触及的特定外周神经。该设备可以通过经皮导管输送,并利用磁电材料通过组织接收数据和功率,通过数字可编程的 1mm×0.8mm 片上系统实现。该设备直接植入大鼠坐骨神经上方,或在猪的股动脉附近(通过导管将刺激引线引入血管),可实现对动物坐骨神经和股神经的无线刺激。微创磁电植入物可能允许在无需进行开放性手术或植入电池供电脉冲发生器的情况下刺激神经。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/521fe3d52c3e/41551_2022_873_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/0627cde64fc9/41551_2022_873_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/4a8d77c7155e/41551_2022_873_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/50d7c950f65d/41551_2022_873_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/a7807351b3ba/41551_2022_873_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/521fe3d52c3e/41551_2022_873_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/0627cde64fc9/41551_2022_873_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/4a8d77c7155e/41551_2022_873_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/50d7c950f65d/41551_2022_873_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/a7807351b3ba/41551_2022_873_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e981/9213237/521fe3d52c3e/41551_2022_873_Fig5_HTML.jpg

相似文献

[1]
A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves.

Nat Biomed Eng. 2022-6

[2]
A Self-powered Neural Stimulator Based on Programmable Triboelectric Nanogenerators.

Annu Int Conf IEEE Eng Med Biol Soc. 2023-7

[3]
Wearable wireless power systems for 'ME-BIT' magnetoelectric-powered bio implants.

J Neural Eng. 2021-7-26

[4]
Implantation and Control of Wireless, Battery-free Systems for Peripheral Nerve Interfacing.

J Vis Exp. 2021-10-20

[5]
Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.

J Neurosci Methods. 2020-3-1

[6]
Magnetoelectrics for Implantable Bioelectronics: Progress to Date.

Acc Chem Res. 2024-10-15

[7]
Modular Optoelectronic System for Wireless, Programmable Neuromodulation During Free Behavior.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[8]
An implantable wireless optogenetic stimulation system for peripheral nerve control.

Annu Int Conf IEEE Eng Med Biol Soc. 2015-8

[9]
An Implantable Peripheral Nerve Recording and Stimulation System for Experiments on Freely Moving Animal Subjects.

Sci Rep. 2018-4-17

[10]
Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants.

Adv Mater. 2024-5

引用本文的文献

[1]
Multifunctional bioelectronics for brain-body circuits.

Nat Rev Bioeng. 2025-6

[2]
Implantable bioelectronic devices for photoelectrochemical and electrochemical modulation of cells and tissues.

Nat Rev Bioeng. 2025-6

[3]
A closed loop fully automated wireless vagus nerve stimulation system.

Sci Rep. 2025-7-30

[4]
Multidimensional advances in neural interface technology for peripheral nerve repair: From material innovation to clinical translation.

Mater Today Bio. 2025-7-14

[5]
Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology.

Micromachines (Basel). 2025-4-28

[6]
Magnetically driven triboelectric nanogenerator for a wireless, versatile energy transfer system.

Sci Adv. 2025-4-25

[7]
Precision neuroregulation combining liquid metal and magnetic stimulation.

J Neuroeng Rehabil. 2025-4-7

[8]
Interfacing with the Brain: How Nanotechnology Can Contribute.

ACS Nano. 2025-3-25

[9]
Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future.

Mater Today Bio. 2025-2-5

[10]
Wireless Frequency-Multiplexed Acoustic Array-based Acoustofluidics.

Adv Mater Technol. 2024-12-2

本文引用的文献

[1]
Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing.

Nat Commun. 2021-5-25

[2]
Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant.

Nat Biotechnol. 2021-7

[3]
Ceramic packaging in neural implants.

J Neural Eng. 2021-2-24

[4]
MagNI: A Magnetoelectrically Powered and Controlled Wireless Neurostimulating Implant.

IEEE Trans Biomed Circuits Syst. 2020-12

[5]
Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience.

J Neurointerv Surg. 2021-2

[6]
Magnetoelectric Materials for Miniature, Wireless Neural Stimulation at Therapeutic Frequencies.

Neuron. 2020-6-8

[7]
Over the Horizon: The Present and Future of Endovascular Neural Recording and Stimulation.

Front Neurosci. 2020-5-6

[8]
A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication.

Nat Biomed Eng. 2020-2-19

[9]
Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics.

Proc Natl Acad Sci U S A. 2020-1-23

[10]
The Microbead: A 0.009 mm Implantable Wireless Neural Stimulator.

IEEE Trans Biomed Circuits Syst. 2019-9-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索