Suppr超能文献

贝叶斯网络建模的报告标准。

Reporting Standards for Bayesian Network Modelling.

作者信息

Barons Martine J, Hanea Anca M, Mascaro Steven, Woodberry Owen

机构信息

Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.

Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Parkville, VIC 3052, Australia.

出版信息

Entropy (Basel). 2025 Jan 15;27(1):69. doi: 10.3390/e27010069.

Abstract

Reproducibility is a key measure of the veracity of a modelling result or finding. In other research areas, notably in medicine, reproducibility is supported by mandating the inclusion of an agreed set of details into every research publication, facilitating systematic reviews, transparency and reproducibility. Governments and international organisations are increasingly turning to modelling approaches in the development and decision-making for policy and have begun asking questions about accountability in model-based decision making. The ethical issues of relying on modelling that is biased, poorly constructed, constrained by heroic assumptions and not reproducible are multiplied when such models are used to underpin decisions impacting human and planetary well-being. Bayesian Network modelling is used in policy development and decision support across a wide range of domains. In light of the recent trend for governments and other organisations to demand accountability and transparency, we have compiled and tested a reporting checklist for Bayesian Network modelling which will bring the desirable level of transparency and reproducibility to enable models to support decision making and allow the robust comparison and combination of models. The use of this checklist would support the ethical use of Bayesian network modelling for impactful decision making and research.

摘要

可重复性是衡量建模结果或发现准确性的关键指标。在其他研究领域,尤其是医学领域,通过要求在每篇研究出版物中纳入一套商定的详细信息,来支持可重复性,从而促进系统评价、透明度和可重复性。政府和国际组织在政策制定和决策过程中越来越多地采用建模方法,并开始对基于模型的决策中的问责制提出疑问。当使用有偏差、构建不佳、受大胆假设限制且不可重复的模型来支持影响人类和地球福祉的决策时,依赖此类模型所产生的伦理问题会成倍增加。贝叶斯网络建模被广泛应用于各个领域的政策制定和决策支持。鉴于政府和其他组织近期对问责制和透明度的要求趋势,我们编制并测试了一份贝叶斯网络建模报告清单,该清单将带来理想的透明度和可重复性水平,使模型能够支持决策制定,并允许对模型进行有力的比较和整合。使用这份清单将支持在有影响力的决策制定和研究中对贝叶斯网络建模进行合乎伦理的使用。

相似文献

1
Reporting Standards for Bayesian Network Modelling.贝叶斯网络建模的报告标准。
Entropy (Basel). 2025 Jan 15;27(1):69. doi: 10.3390/e27010069.
2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Critical Care Network in the State of Qatar.卡塔尔国重症监护网络。
Qatar Med J. 2019 Nov 7;2019(2):2. doi: 10.5339/qmj.2019.qccc.2. eCollection 2019.

本文引用的文献

1
Reproducibility in the Social Sciences.社会科学中的可重复性
Annu Rev Sociol. 2022 Jul;48(1):65-85. doi: 10.1146/annurev-soc-090221-035954. Epub 2022 Apr 26.
6
Replicability, Robustness, and Reproducibility in Psychological Science.心理科学中的可重复性、稳健性和再现性。
Annu Rev Psychol. 2022 Jan 4;73:719-748. doi: 10.1146/annurev-psych-020821-114157. Epub 2021 Oct 19.
9
The fundamental principles of reproducibility.可重复性的基本原则。
Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200210. doi: 10.1098/rsta.2020.0210. Epub 2021 Mar 29.
10
Bayesian networks in healthcare: Distribution by medical condition.贝叶斯网络在医疗保健中的应用:按医疗状况分布。
Artif Intell Med. 2020 Jul;107:101912. doi: 10.1016/j.artmed.2020.101912. Epub 2020 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验