Álvarez-López Aroa, Tabraue-Rubio Raquel, Daza Rafael, Colchero Luis, Guinea Gustavo V, Cohen-Solal Martine, Pérez-Rigueiro José, González-Nieto Daniel
Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.
Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Biomimetics (Basel). 2025 Jan 16;10(1):58. doi: 10.3390/biomimetics10010058.
Under benign conditions, bone tissue can regenerate itself without external intervention. However, this regenerative capacity can be compromised by various factors, most importantly related with the extent of the injury. Critical-sized defects, exceeding the body's natural healing ability, demand the use of temporary or permanent devices like artificial joints or bone substitutes. While titanium is a widely used material for bone replacement, its integration into the body remains limited. This often leads to the progressive loosening of the implant and the need for revision surgeries, which are technically challenging, are commonly associated with high complication rates, and impose a significant economic burden. To enhance implant osseointegration, numerous studies have focused on the development of surface functionalization techniques to improve the response of the body to the implant. Yet, the challenge of achieving reliable and long-lasting prostheses persists. In this work, we address this challenge by applying a robust and versatile biofunctionalization process followed by the decoration of the material with oligopeptides. We immobilize four different peptides (RGD, CS-1, IKVAV, PHSRN) on R-THAB functionalized surfaces and find them to be highly stable in the long term. We also find that RGD is the best-performing peptide in in vitro cell cultures, enhancing adhesion, proliferation, and osteogenic differentiation of mesenchymal stem cells. To assess the in vivo effect of RGD-decorated Ti-6Al-4V implants, we develop a calvarial model in murine hosts. We find that the RGD-decoration remains stable for 1 week after the surgical procedure and reduces post-implantation macrophage-related inflammation. These results highlight the potential of peptide decoration on R-THAB functionalized surfaces to expedite the development of novel metallic biomaterials with enhanced biocompatibility properties, thereby advancing the field of regenerative medicine.
在良性条件下,骨组织无需外部干预即可自我再生。然而,这种再生能力可能会受到多种因素的影响,其中最重要的是与损伤程度有关。临界尺寸的缺损超过了身体的自然愈合能力,需要使用临时或永久性装置,如人工关节或骨替代物。虽然钛是一种广泛用于骨置换的材料,但其与身体的整合仍然有限。这通常会导致植入物逐渐松动,需要进行翻修手术,而翻修手术技术上具有挑战性,通常并发症发生率高,并带来巨大的经济负担。为了增强植入物的骨整合,许多研究集中在开发表面功能化技术,以改善身体对植入物的反应。然而,实现可靠和持久假体的挑战仍然存在。在这项工作中,我们通过应用一种强大且通用的生物功能化过程,然后用寡肽修饰材料来应对这一挑战。我们将四种不同的肽(RGD、CS-1、IKVAV、PHSRN)固定在R-THAB功能化表面上,发现它们在长期内高度稳定。我们还发现,RGD是体外细胞培养中表现最佳的肽,可增强间充质干细胞的粘附、增殖和成骨分化。为了评估RGD修饰的Ti-6Al-4V植入物的体内效果,我们在小鼠宿主中建立了颅骨模型。我们发现,RGD修饰在手术后1周内保持稳定,并减少植入后巨噬细胞相关的炎症。这些结果突出了在R-THAB功能化表面上进行肽修饰的潜力,以加速具有增强生物相容性特性的新型金属生物材料的开发,从而推动再生医学领域的发展。