Li Wing Shun, Carter Lucas M, Almassalha Luay Matthew, Gong Ruyi, Pujadas-Liwag Emily M, Kuo Tiffany, MacQuarrie Kyle L, Carignano Marcelo, Dunton Cody, Dravid Vinayak, Kanemaki Masato T, Szleifer Igal, Backman Vadim
Applied Physics Program, Northwestern University, Evanston, IL 60208, USA.
Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
Sci Adv. 2025 Jan 24;11(4):eadp0855. doi: 10.1126/sciadv.adp0855.
Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains. Our results indicate that packing domains are not physical manifestation of TADs. Using electron microscopy, we found that only 20% of packing domains are lost upon RAD21 depletion. The effect of RAD21 depletion is restricted to small, poorly packed (nascent) packing domains. In addition, we present evidence that cohesin-mediated loop extrusion generates nascent domains that undergo maturation through nucleosome posttranslational modifications. Our results demonstrate that a 3D genomic structure, composed of packing domains, is generated through cohesin activity and nucleosome modifications.
理解染色质组织需要整合基因组连通性和物理结构的测量数据。众所周知,黏连蛋白对于Hi-C中拓扑相关结构域(TAD)和环状连通性特征至关重要,但尚未使用电子显微镜研究其在物理结构方面的相应变化。我们将染色质扫描透射电子断层扫描与多组学分析和单分子定位显微镜相结合,研究黏连蛋白在调节构象定义的染色质纳米级包装结构域中的作用。我们的结果表明,包装结构域并非TAD的物理表现形式。通过电子显微镜,我们发现RAD21缺失后仅有20%的包装结构域丢失。RAD21缺失的影响仅限于小的、包装不佳(新生)的包装结构域。此外,我们提供的证据表明,黏连蛋白介导的环状挤压产生了通过核小体翻译后修饰进行成熟的新生结构域。我们的结果表明,由包装结构域组成的三维基因组结构是通过黏连蛋白活性和核小体修饰产生的。