Ish Jennifer L, Madrigal Jessica M, Pearce John L, Keil Alexander P, Fisher Jared A, Jones Rena R, Sandler Dale P, White Alexandra J
From the Epidemiology Branch, Division of Intramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, NC.
Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Rockville, MD.
Epidemiology. 2025 May 1;36(3):391-400. doi: 10.1097/EDE.0000000000001837. Epub 2025 Jan 24.
We evaluated air emissions of industrial compounds, many of which have carcinogenic or endocrine-disrupting properties, in relation to breast cancer incidence.
Using the United States Environmental Protection Agency's Toxics Release Inventory, we quantified air emissions of 28 compounds near Sister Study participants' residences during the 10 years leading up to study enrollment (2003-2006; n = 46,150). We used Cox proportional hazards regression to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for associations of residential emission levels of single pollutants with incident breast cancer. We assessed pollutant mixtures using an exposure continuum mapping (ECM) framework and characterized associations using a joint-exposure response function.
During follow-up (median = 13.4 years), we identified 4155 breast cancer cases. We observed nonmonotonic but elevated associations with breast cancer for emissions within 3 km of the residence for nickel compounds (HR quintile5vs.none = 1.3; 95% CI = 1.0, 1.6) and trichloroethylene (HR quintile5vs.none = 1.3; 95% CI = 1.0, 1.6). ECM identified 25 mixture profiles that explained 72% of the variance in emissions patterns, with most participants experiencing relatively low emissions profiles. The joint-exposure response function suggested that a higher incidence of breast cancer occurred among individuals with relatively rare, high emissions profiles; however, the overall trend was not associated with breast cancer ( P = 0.09).
In our study, breast cancer incidence was associated with air emissions of certain industrial carcinogens. Although the overall emissions mixture did not show a trend related to breast cancer, this may not reflect the importance of individual compounds or specific emissions sources.
我们评估了工业化合物的空气排放情况,其中许多化合物具有致癌或内分泌干扰特性,并将其与乳腺癌发病率相关联。
利用美国环境保护局的有毒物质排放清单,我们对姐妹研究参与者住所附近在研究入组前10年(2003 - 2006年;n = 46,150)期间28种化合物的空气排放进行了量化。我们使用Cox比例风险回归来估计单一污染物的住宅排放水平与乳腺癌发病之间关联的调整风险比(HR)和95%置信区间(CI)。我们使用暴露连续体映射(ECM)框架评估污染物混合物,并使用联合暴露反应函数来表征关联。
在随访期间(中位时间 = 13.4年),我们确定了4155例乳腺癌病例。我们观察到,对于镍化合物(HR第5分位数vs.无暴露 = 1.3;95% CI = 1.0, 1.6)和三氯乙烯(HR第5分位数vs.无暴露 = 1.3;95% CI = 1.0, 1.6),住所3公里范围内的排放与乳腺癌存在非单调但升高的关联。ECM识别出25种混合物概况,这些概况解释了排放模式中72%的方差,大多数参与者经历的是相对低排放概况。联合暴露反应函数表明,在具有相对罕见的高排放概况的个体中,乳腺癌发病率较高;然而,总体趋势与乳腺癌无关(P = 0.09)。
在我们的研究中,乳腺癌发病率与某些工业致癌物的空气排放有关。尽管总体排放混合物未显示出与乳腺癌相关的趋势,但这可能并不反映个别化合物或特定排放源的重要性。