Al Madi Naser, Torra Brett, Li Yixin, Tariq Najam
Department of Computer Science, Colby College, 4000 Mayflower Hill, Waterville, 04901, Maine, USA.
Behav Res Methods. 2025 Jan 24;57(2):72. doi: 10.3758/s13428-025-02597-3.
In reading tasks, drift can move fixations from one word to another or even another line, invalidating the eye-tracking recording. Manual correction is time-consuming and subjective, while automated correction is fast - yet limited in accuracy. In this paper, we present Fix8 (Fixate), an open-source GUI tool that offers a novel semi-automated correction approach for eye-tracking data in reading tasks. The proposed approach allows the user to collaborate with an algorithm to produce accurate corrections faster without sacrificing accuracy. Through a usability study (N = 14) we assess the time benefits of the proposed technique, and measure the correction accuracy in comparison to manual correction. In addition, we assess subjective workload through the NASA Task Load Index, and user opinions through Likert-scale questions. Our results show that, on average, the proposed technique was 44% faster than manual correction without any sacrifice of accuracy. In addition, users reported a preference for the proposed technique, lower workload, and higher perceived performance compared to manual correction. Fix8 is a valuable tool that offers useful features for generating synthetic eye-tracking data, visualization, filters, data converters, and eye-movement analysis in addition to the main contribution in data correction.
在阅读任务中,漂移可能会使注视点从一个单词移动到另一个单词,甚至移动到另一行,从而使眼动追踪记录无效。人工校正既耗时又主观,而自动校正虽速度快,但准确性有限。在本文中,我们介绍了Fix8(Fixate),这是一个开源的图形用户界面工具,它为阅读任务中的眼动追踪数据提供了一种新颖的半自动校正方法。所提出的方法允许用户与算法协作,在不牺牲准确性的情况下更快地进行准确校正。通过一项可用性研究(N = 14),我们评估了所提出技术的时间优势,并与人工校正相比测量了校正准确性。此外,我们通过NASA任务负荷指数评估主观工作量,并通过李克特量表问题收集用户意见。我们的结果表明,平均而言,所提出的技术比人工校正快44%,且不牺牲任何准确性。此外,与人工校正相比,用户表示更喜欢所提出的技术,认为工作量更低,感知性能更高。Fix8是一个有价值的工具,除了在数据校正方面的主要贡献外,还提供了用于生成合成眼动追踪数据、可视化、过滤器、数据转换器和眼动分析的有用功能。