Suppr超能文献

基于深度学习的二维术中超声图像胶质瘤分割:使用脑肿瘤术中超声数据库(BraTioUS)的多中心研究

Deep Learning-Based Glioma Segmentation of 2D Intraoperative Ultrasound Images: A Multicenter Study Using the Brain Tumor Intraoperative Ultrasound Database (BraTioUS).

作者信息

Cepeda Santiago, Esteban-Sinovas Olga, Singh Vikas, Shetty Prakash, Moiyadi Aliasgar, Dixon Luke, Weld Alistair, Anichini Giulio, Giannarou Stamatia, Camp Sophie, Zemmoura Ilyess, Giammalva Giuseppe Roberto, Del Bene Massimiliano, Barbotti Arianna, DiMeco Francesco, West Timothy Richard, Nahed Brian Vala, Romero Roberto, Arrese Ignacio, Hornero Roberto, Sarabia Rosario

机构信息

Department of Neurosurgery, Río Hortega University Hospital, 47014 Valladolid, Spain.

Department of Neurosurgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai 400012, Maharashtra, India.

出版信息

Cancers (Basel). 2025 Jan 19;17(2):315. doi: 10.3390/cancers17020315.

Abstract

Intraoperative ultrasound (ioUS) provides real-time imaging during neurosurgical procedures, with advantages such as portability and cost-effectiveness. Accurate tumor segmentation has the potential to substantially enhance the interpretability of ioUS images; however, its implementation is limited by persistent challenges, including noise, artifacts, and anatomical variability. This study aims to develop a convolutional neural network (CNN) model for glioma segmentation in ioUS images via a multicenter dataset. We retrospectively collected data from the BraTioUS and ReMIND datasets, including histologically confirmed gliomas with high-quality B-mode images. For each patient, the tumor was manually segmented on the 2D slice with its largest diameter. A CNN was trained using the nnU-Net framework. The dataset was stratified by center and divided into training (70%) and testing (30%) subsets, with external validation performed on two independent cohorts: the RESECT-SEG database and the Imperial College NHS Trust London cohort. Performance was evaluated using metrics such as the Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), and 95th percentile Hausdorff distance (HD95). The training cohort consisted of 197 subjects, 56 of whom were in the hold-out testing set and 53 in the external validation cohort. In the hold-out testing set, the model achieved a median DSC of 0.90, ASSD of 8.51, and HD95 of 29.08. On external validation, the model achieved a DSC of 0.65, ASSD of 14.14, and HD95 of 44.02 on the RESECT-SEG database and a DSC of 0.93, ASSD of 8.58, and HD95 of 28.81 on the Imperial-NHS cohort. This study supports the feasibility of CNN-based glioma segmentation in ioUS across multiple centers. Future work should enhance segmentation detail and explore real-time clinical implementation, potentially expanding ioUS's role in neurosurgical resection.

摘要

术中超声(ioUS)在神经外科手术过程中提供实时成像,具有便携性和成本效益等优点。准确的肿瘤分割有可能显著提高ioUS图像的可解释性;然而,其实施受到持续挑战的限制,包括噪声、伪影和解剖变异。本研究旨在通过多中心数据集开发一种用于ioUS图像中胶质瘤分割的卷积神经网络(CNN)模型。我们回顾性收集了来自BraTioUS和ReMIND数据集的数据,包括经组织学证实的具有高质量B模式图像的胶质瘤。对于每位患者,在肿瘤最大直径的二维切片上手动分割肿瘤。使用nnU-Net框架训练CNN。数据集按中心分层,分为训练子集(70%)和测试子集(30%),并在两个独立队列上进行外部验证:RESECT-SEG数据库和伦敦帝国学院国民保健服务信托队列。使用诸如Dice相似系数(DSC)、平均对称表面距离(ASSD)和第95百分位数豪斯多夫距离(HD95)等指标评估性能。训练队列由197名受试者组成,其中56名在保留测试集中,53名在外部验证队列中。在保留测试集中,模型的DSC中位数为0.90,ASSD为8.51,HD95为29.08。在外部验证中,该模型在RESECT-SEG数据库上的DSC为0.65,ASSD为14.14,HD95为44.02;在帝国国民保健服务队列上的DSC为0.93,ASSD为8.58,HD95为28.81。本研究支持基于CNN的胶质瘤分割在多个中心的ioUS中的可行性。未来的工作应提高分割细节并探索实时临床应用,可能会扩大ioUS在神经外科切除中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bb7/11763412/b0285eef7e93/cancers-17-00315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验