文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脂质体囊泡制备技术与结构——图文综述

Niosome Preparation Techniques and Structure-An Illustrated Review.

作者信息

Mawazi Saeid Mezail, Ge Yi, Widodo Riyanto Teguh

机构信息

Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia.

School of Pharmacy, Management and Science University, Shah Alam 40100, Selangor, Malaysia.

出版信息

Pharmaceutics. 2025 Jan 6;17(1):67. doi: 10.3390/pharmaceutics17010067.


DOI:10.3390/pharmaceutics17010067
PMID:39861715
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11768252/
Abstract

A comprehensive review of recent research on niosomes was conducted using a mixed methodology, including searches in databases such as Scopus, PubMed, and Web of Science (WoS). Articles were selected based on relevance. The current review examines the historical development of niosomes focusing on the methods of preparations and the contemporary strategies and prospective advancements within the realm of drug delivery systems, highlighting innovative approaches across transdermal, oral, and cellular delivery. This review reported the method of niosomes preparations including a new and novel approach for the preparation of niosomes known as the ball milling method (BM). This technique allows for the precise manipulation of size and shape, leading to improvements in drug release, encapsulation efficiency, and uniformity compared to traditional methods. Niosomes can serve as carriers for delivering various types of drugs, including hydrophobic, hydrophilic, and amphiphilic. This improves the efficiency of encapsulating different drugs, the size of targeted particles, and the desired zeta potential. This is achieved by using a specific charge-inducing agent for drug delivery and targeting specific diseases. These efforts are crucial for overcoming the current limitations and unlocking the full therapeutic potential of modern medicine.

摘要

采用混合方法对近期有关非离子表面活性剂囊泡的研究进行了全面综述,包括在Scopus、PubMed和科学网(WoS)等数据库中进行检索。根据相关性筛选文章。本综述考察了非离子表面活性剂囊泡的历史发展,重点关注其制备方法以及药物递送系统领域的当代策略和未来进展,突出了经皮、口服和细胞递送方面的创新方法。本综述报道了非离子表面活性剂囊泡的制备方法,包括一种制备非离子表面活性剂囊泡的全新方法,即球磨法(BM)。与传统方法相比,该技术能够精确控制尺寸和形状,从而改善药物释放、包封效率和均匀性。非离子表面活性剂囊泡可用作递送各种类型药物的载体,包括疏水性、亲水性和两亲性药物。这提高了不同药物的包封效率、靶向颗粒的大小以及所需的zeta电位。这是通过使用特定的电荷诱导剂进行药物递送和靶向特定疾病来实现的。这些努力对于克服当前的局限性和释放现代医学的全部治疗潜力至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/1f595eaac60f/pharmaceutics-17-00067-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/e911b73a201f/pharmaceutics-17-00067-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/e8d5f356a58c/pharmaceutics-17-00067-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/eec0f004fa5d/pharmaceutics-17-00067-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/bde03324111f/pharmaceutics-17-00067-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/8c006a6cbf03/pharmaceutics-17-00067-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/1ccb096028bd/pharmaceutics-17-00067-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/7c3a7e793f9a/pharmaceutics-17-00067-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/e1efe8119d9b/pharmaceutics-17-00067-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/3d1274f079db/pharmaceutics-17-00067-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/11b16007512f/pharmaceutics-17-00067-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/02a534c49d0d/pharmaceutics-17-00067-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/52a5980084d0/pharmaceutics-17-00067-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/f322463770db/pharmaceutics-17-00067-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/9b87f10c7704/pharmaceutics-17-00067-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/1f595eaac60f/pharmaceutics-17-00067-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/e911b73a201f/pharmaceutics-17-00067-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/e8d5f356a58c/pharmaceutics-17-00067-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/eec0f004fa5d/pharmaceutics-17-00067-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/bde03324111f/pharmaceutics-17-00067-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/8c006a6cbf03/pharmaceutics-17-00067-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/1ccb096028bd/pharmaceutics-17-00067-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/7c3a7e793f9a/pharmaceutics-17-00067-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/e1efe8119d9b/pharmaceutics-17-00067-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/3d1274f079db/pharmaceutics-17-00067-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/11b16007512f/pharmaceutics-17-00067-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/02a534c49d0d/pharmaceutics-17-00067-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/52a5980084d0/pharmaceutics-17-00067-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/f322463770db/pharmaceutics-17-00067-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/9b87f10c7704/pharmaceutics-17-00067-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e6/11768252/1f595eaac60f/pharmaceutics-17-00067-g015.jpg

相似文献

[1]
Niosome Preparation Techniques and Structure-An Illustrated Review.

Pharmaceutics. 2025-1-6

[2]
Non-Ionic Surfactant Vesicles (Niosomes): Structure, Functions, Classification and its Advances in Enhanced Drug Delivery.

Recent Adv Drug Deliv Formul. 2024-12-9

[3]
A Comprehensive Review of Strategies of Topical Niosomes and Their Synergistic Effect for Enhanced Therapeutic Outcomes.

Pharm Nanotechnol. 2024-12-30

[4]
Efficient PEGylated magnetic nanoniosomes for co-delivery of artemisinin and metformin: a new frontier in chemotherapeutic efficacy and cancer therapy.

Sci Rep. 2024-11-9

[5]
Nano-niosomes as nanoscale drug delivery systems: an illustrated review.

J Control Release. 2014-4-18

[6]
Comparative Study of Lycopene-Loaded Niosomes Prepared by Microfluidic and Thin-Film Hydration Techniques for UVB Protection and Anti-Hyperpigmentation Activity.

Int J Mol Sci. 2024-10-31

[7]
Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes.

Adv Biomed Res. 2016-3-16

[8]
A Comprehensive Review on Recent Advances and Patents of Niosomes.

Recent Pat Nanotechnol. 2025

[9]
Examination of the effect of niosome preparation methods in encapsulating model antigens on the vesicle characteristics and their ability to induce immune responses.

J Liposome Res. 2021-6

[10]
Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications.

Eur J Pharm Biopharm. 2019-8-22

引用本文的文献

[1]
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential.

Pharmaceutics. 2025-7-30

[2]
pH Gradient-Driven Loading of Doxorubicin into Niosomes: A Comparative Study Using Bromocresol Green as a Visual Indicator.

Pharmaceutics. 2025-6-30

[3]
New Gel Approaches for the Transdermal Delivery of Meloxicam.

Gels. 2025-6-26

[4]
Recent Advances in Vitamin E TPGS-Based Organic Nanocarriers for Enhancing the Oral Bioavailability of Active Compounds: A Systematic Review.

Pharmaceutics. 2025-4-7

[5]
Hyaluronic Acid and Skin: Its Role in Aging and Wound-Healing Processes.

Gels. 2025-4-9

[6]
Formulation and characterization of BBR loaded niosomes using saponin as a nonionic biosurfactant investigating synergistic effects to enhance antibacterial activity.

Sci Rep. 2025-2-12

本文引用的文献

[1]
Comparative Study of Lycopene-Loaded Niosomes Prepared by Microfluidic and Thin-Film Hydration Techniques for UVB Protection and Anti-Hyperpigmentation Activity.

Int J Mol Sci. 2024-10-31

[2]
Targeting the Gut: A Systematic Review of Specific Drug Nanocarriers.

Pharmaceutics. 2024-3-21

[3]
Evaluating a targeted Palbociclib-Trastuzumab loaded smart niosome platform for treating HER2 positive breast cancer cells.

Int J Pharm X. 2024-3-11

[4]
Optimization of a Luteolin-Loaded TPGS/Poloxamer 407 Nanomicelle: The Effects of Copolymers, Hydration Temperature and Duration, and Freezing Temperature on Encapsulation Efficiency, Particle Size, and Solubility.

Cancers (Basel). 2023-7-24

[5]
Cyclodextrin modified niosomes to encapsulate hydrophilic compounds.

RSC Adv. 2018-8-23

[6]
Developing Actively Targeted Nanoparticles to Fight Cancer: Focus on Italian Research.

Pharmaceutics. 2021-9-22

[7]
Anthocyanin complex niosome gel accelerates oral wound healing: In vitro and clinical studies.

Nanomedicine. 2021-10

[8]
Fabrication and Applications of Microfluidic Devices: A Review.

Int J Mol Sci. 2021-2-18

[9]
Vitamin D3 Loaded Niosomes and Transfersomes Produced by Ethanol Injection Method: Identification of the Critical Preparation Step for Size Control.

Foods. 2020-9-26

[10]
Sodium dodecyl sulfate improved stability and transdermal delivery of salidroside-encapsulated niosomes via effects on zeta potential.

Int J Pharm. 2020-4-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索