文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有改善的机械和生物学性能、用于骨再生应用的β-TCP-HBO-Cu三维纳米复合材料。

3D nanocomposites of β-TCP-HBO-Cu with improved mechanical and biological performances for bone regeneration applications.

作者信息

Avinashi Sarvesh Kumar, Mishra Rajat Kumar, Kumar Saurabh, Shamsad Amreen, Parveen Shama, Sahu Surajita, Kumari Savita, Fatima Zaireen, Yadav Sachin Kumar, Banerjee Monisha, Mishra Monalisa, Mehta Neeraj, Gautam Chandki Ram

机构信息

Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.

Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.

出版信息

Sci Rep. 2025 Jan 25;15(1):3224. doi: 10.1038/s41598-025-87988-4.


DOI:10.1038/s41598-025-87988-4
PMID:39863796
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11763077/
Abstract

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances. Several characterization techniques have been used to investigate the various characteristics of fabricated porous composites. SEM and TEM studies revealed the porous morphology and hexagonal sheets of the β-TCP for the composite THC8 (82TCP-10HBO-8Cu). Moreover, the mechanical study showed excellent compressive strength (188 MPa), a high Young's modulus (2.84 GPa), and elevated fracture toughness (9.11 MPa.m). An in vitro study by MTT assay on osteoblast (MG-63) cells demonstrated no or minimal cytotoxicity at the higher concentration, 100 µg/ml after 24 h and it was found a more pronounced result at 20 µg/ml on increasing the concentration of Cu nanoparticles after incubating 72 h. The THC12 composite showed the highest antibacterial potency exclusively against B. subtilis. S. pyogene, S. typhi and E. coli. at 10 mg/ml, indicating its potential effectiveness in inhibiting all of these pathogens. Genotoxicity and cytotoxicity tests were also performed on rearing Drosophila melanogaster, and these findings did not detect any trypan blue-positive staining, which further recommended that the existence of composites did not harm the larval gut. Therefore, the fabricated porous composites THC8 and THC12 are suitable for bone regrowth without harming the surrounding cells and protect against bacterial infections.

摘要

最近,复合材料的三维多孔结构在细胞增殖、骨再生和抗癌活性中发挥着关键作用。β -磷酸三钙(β-TCP)的骨诱导和骨传导特性能够实现多种骨缺损的完全修复。在此,通过湿化学沉淀法合成了β-TCP,并采用固态反应法制备了其与氧化硼(HBO)和铜纳米颗粒的三维多孔复合材料,从而改善了材料的力学性能和生物学性能。已使用多种表征技术来研究制备的多孔复合材料的各种特性。扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究揭示了复合材料THC8(82%TCP - 10%HBO - 8%Cu)中β-TCP的多孔形态和六边形片层。此外,力学研究表明该材料具有优异的抗压强度(188兆帕)、高杨氏模量(2.84吉帕)和较高的断裂韧性(9.11兆帕·米)。通过噻唑蓝(MTT)法对成骨细胞(MG - 63)进行的体外研究表明,在较高浓度(24小时后为100微克/毫升)时无细胞毒性或细胞毒性极小,并且在孵育72小时后,当铜纳米颗粒浓度增加到20微克/毫升时,效果更为显著。THC12复合材料对枯草芽孢杆菌、化脓性链球菌、伤寒沙门氏菌和大肠杆菌表现出最高的抗菌效力,在浓度为10毫克/毫升时,表明其在抑制所有这些病原体方面具有潜在效果。还对黑腹果蝇进行了遗传毒性和细胞毒性测试,这些结果未检测到任何台盼蓝阳性染色,这进一步表明复合材料的存在不会损害幼虫肠道。因此,制备的多孔复合材料THC8和THC12适用于骨再生,不会损害周围细胞,并能预防细菌感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/644be2bb92a3/41598_2025_87988_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/08e444d72dc2/41598_2025_87988_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/023a5babe596/41598_2025_87988_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/3223062d14c7/41598_2025_87988_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/bdb9672f54f7/41598_2025_87988_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/9f33a51ec393/41598_2025_87988_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/ef290abb7d98/41598_2025_87988_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/2a98417b3ecb/41598_2025_87988_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/bd7fcedad4d3/41598_2025_87988_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/6a8b5731647d/41598_2025_87988_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/bcb8cbe768db/41598_2025_87988_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/327567adf188/41598_2025_87988_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/31471db2bd66/41598_2025_87988_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/dd19fb9fac5f/41598_2025_87988_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/359641380647/41598_2025_87988_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/02998986fce0/41598_2025_87988_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/644be2bb92a3/41598_2025_87988_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/08e444d72dc2/41598_2025_87988_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/023a5babe596/41598_2025_87988_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/3223062d14c7/41598_2025_87988_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/bdb9672f54f7/41598_2025_87988_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/9f33a51ec393/41598_2025_87988_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/ef290abb7d98/41598_2025_87988_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/2a98417b3ecb/41598_2025_87988_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/bd7fcedad4d3/41598_2025_87988_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/6a8b5731647d/41598_2025_87988_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/bcb8cbe768db/41598_2025_87988_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/327567adf188/41598_2025_87988_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/31471db2bd66/41598_2025_87988_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/dd19fb9fac5f/41598_2025_87988_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/359641380647/41598_2025_87988_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/02998986fce0/41598_2025_87988_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/11763077/644be2bb92a3/41598_2025_87988_Fig16_HTML.jpg

相似文献

[1]
3D nanocomposites of β-TCP-HBO-Cu with improved mechanical and biological performances for bone regeneration applications.

Sci Rep. 2025-1-25

[2]
Effect of graphene oxide in an injectable hydrogel on the osteogenic differentiation of mesenchymal stem cells.

J Biomater Sci Polym Ed. 2025-2

[3]
Stakeholders' perceptions and experiences of factors influencing the commissioning, delivery, and uptake of general health checks: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2025-3-20

[4]
Aural toilet (ear cleaning) for chronic suppurative otitis media.

Cochrane Database Syst Rev. 2025-6-9

[5]
A bioactive Cu-grafted gel coating with micro-nano structures for simultaneous enhancement of bone regeneration and infection resistance.

J Mater Chem B. 2025-6-18

[6]
Surveillance for Violent Deaths - National Violent Death Reporting System, 50 States, the District of Columbia, and Puerto Rico, 2022.

MMWR Surveill Summ. 2025-6-12

[7]
Structural, morphological and biological assessment of magnetic hydroxyapatite with superior hyperthermia potential for orthopedic applications.

Sci Rep. 2025-1-25

[8]
Non-pharmacological interventions for sleep promotion in hospitalized children.

Cochrane Database Syst Rev. 2022-6-15

[9]
Prenatal administration of progestogens for preventing spontaneous preterm birth in women with a multiple pregnancy.

Cochrane Database Syst Rev. 2019-11-20

[10]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

引用本文的文献

[1]
Topography-based implants for bone regeneration: Design, biological mechanism, and therapeutics.

Mater Today Bio. 2025-7-13

[2]
Mechanochemically-Activated Solid-State Synthesis of Borate-Substituted Tricalcium Phosphate: Evaluation of Biocompatibility and Antimicrobial Performance.

Molecules. 2025-3-31

[3]
Research Progress of Bone Grafting: A Comprehensive Review.

Int J Nanomedicine. 2025-4-15

本文引用的文献

[1]
Fabrication of Novel 3-D Nanocomposites of HAp-TiC-h-BN-ZrO: Enhanced Mechanical Performances and In Vivo Toxicity Study for Biomedical Applications.

ACS Biomater Sci Eng. 2024-4-8

[2]
Synergetic effects of boron nitride with waste zirconia: Evaluation of instantaneous fingerprint detection and mechanical properties for biomedical applications.

J Mech Behav Biomed Mater. 2023-9

[3]
TNF-α and MMPs mediated mucus hypersecretion induced by cigarette smoke: An in vitro study.

Toxicol In Vitro. 2023-10

[4]
Enhanced therapeutic efficacy of Piperlongumine for cancer treatment using nano-liposomes mediated delivery.

Int J Pharm. 2023-8-25

[5]
Coumarin-Based Noncytotoxicity Fluorescent Dye for Tracking Actin Protein in In-Vivo Imaging.

Chem Res Toxicol. 2023-6-19

[6]
β-TCP/S53P4 Scaffolds Obtained by Gel Casting: Synthesis, Properties, and Biomedical Applications.

Bioengineering (Basel). 2023-5-16

[7]
369Fabrication of 3D gel-printed β-tricalcium phosphate/titanium dioxide porous scaffolds for cancellous bone tissue engineering.

Int J Bioprint. 2023-1-19

[8]
Enhanced mechanical properties of hBN-ZrO composites and their biological activities on : synthesis and characterization.

RSC Adv. 2019-12-11

[9]
Fe/Zn-modified tricalcium phosphate (TCP) biomaterials: preparation and biological properties.

RSC Adv. 2019-1-7

[10]
Quasi-HKUST Prepared via Postsynthetic Defect Engineering for Highly Improved Catalytic Conversion of 4-Nitrophenol.

ACS Appl Mater Interfaces. 2022-1-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索