Suppr超能文献

真菌木质纤维素分解酶:一种计算机模拟和全因子设计方法。

Fungal lignocellulolytic enzymes: an in silico and full factorial design approach.

作者信息

de Souza Candeo Esteffany, Scheufele Fabiano Bisinella, de Cassia Campos Pena Aline, Dequigiovanni Gabriel, Linde Giani Andrea, Mata Gerardo, Colauto Nelson Barros, Schaker Patricia Dayane Carvalho

机构信息

Biopark Educação, Department of Bioprocess Engineering and Biotechnology, Toledo, Paraná, Brazil.

Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.

出版信息

World J Microbiol Biotechnol. 2025 Jan 27;41(2):50. doi: 10.1007/s11274-024-04241-2.

Abstract

Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi. Second, a 2³ full factorial design of solid-state cultivation was employed to investigate the cultivation conditions that optimize enzyme activity. In silico analysis of phytopathogen genomes identified proteins with the potential for biomass degradation. Cellulase and phenoloxidase activities were assessed in culture medium and solid-state cultivation. A 2³ full factorial design was employed for solid-state cultivation to evaluate the cellulose, endoglucanase, and laccase activities. In silico analysis shows that C. falcatum has the most diverse enzyme set for lignocellulosic biomass degradation. In vitro assays corroborate this, demonstrating that C. falcatum produces the highest enzyme quantities, except for cellulase, where C. paradoxa outperforms it. Both C. paradoxa and C. falcatum exhibit cellulase and phenoloxidase activities, but only C. falcatum shows laccase activity. Most favorable enzyme production in solid-state cultivation occurred with 85-95 g 100 g bagasse moisture and 5 g 100 g yeast extract, with four-day cultivation period needed for cellulase and endoglucanase in C. paradoxa and 12 days for endoglucanase and laccase in C. falcatum. The in silico and in vitro assays demonstrated that C. falcatum can produce a diverse enzyme set, including laccase, cellulase, and endoglucanase, making it a promising candidate for enzymatic industrial applications.

摘要

高效降解木质纤维素生物质是生产增值产品的关键,有助于实现可持续和可再生解决方案。本研究采用两步法评估奇异长喙壳菌、甘蔗炭疽菌和黑粉菌的木质纤维素分解酶。首先,进行计算机基因组分析以预测这些真菌产生的潜在酶组。其次,采用2³全因子设计的固态培养法来研究优化酶活性的培养条件。对植物病原体基因组的计算机分析鉴定出具有生物质降解潜力的蛋白质。在培养基和固态培养中评估了纤维素酶和酚氧化酶活性。采用2³全因子设计进行固态培养以评估纤维素、内切葡聚糖酶和漆酶活性。计算机分析表明,甘蔗炭疽菌具有用于木质纤维素生物质降解的最多样化酶组。体外试验证实了这一点,表明甘蔗炭疽菌产生的酶量最高,但纤维素酶除外,奇异长喙壳菌在纤维素酶方面表现更优。奇异长喙壳菌和甘蔗炭疽菌均表现出纤维素酶和酚氧化酶活性,但只有甘蔗炭疽菌表现出漆酶活性。固态培养中最有利于酶产生的条件是蔗渣含水量为85 - 95 g/100 g,酵母提取物为5 g/100 g,奇异长喙壳菌的纤维素酶和内切葡聚糖酶培养期为4天,甘蔗炭疽菌的内切葡聚糖酶和漆酶培养期为12天。计算机和体外试验表明,甘蔗炭疽菌可产生包括漆酶、纤维素酶和内切葡聚糖酶在内的多种酶组,使其成为酶工业应用的有前途候选者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验