Talidou Afroditi, Lefebvre Jérémie
Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
eNeuro. 2025 Feb 14;12(2). doi: 10.1523/ENEURO.0402-24.2025. Print 2025 Feb.
Axons in the mammalian brain show significant diversity in myelination motifs, displaying spatial heterogeneity in sheathing along individual axons and across brain regions. However, its impact on neural signaling and susceptibility to injury remains poorly understood. To address this, we leveraged cable theory and developed model axons replicating the myelin sheath distributions observed experimentally in different regions of the mouse central nervous system. We examined how the spatial arrangement of myelin affects propagation and predisposition to conduction failure in axons with cortical versus callosal myelination motifs. Our results indicate that regional differences in myelination significantly influence conduction timing and signaling reliability. Sensitivity of action potential propagation to the specific positioning, lengths, and ordering of myelinated and exposed segments reveals non-linear and path-dependent conduction. Furthermore, myelination motifs impact signaling vulnerability to demyelination, with callosal motifs being particularly sensitive to myelin changes. These findings highlight the crucial role of myelinating glia in brain function and disease.
哺乳动物大脑中的轴突在髓鞘形成模式上表现出显著的多样性,在单个轴突以及不同脑区的包裹过程中呈现出空间异质性。然而,其对神经信号传导以及损伤易感性的影响仍知之甚少。为了解决这一问题,我们利用电缆理论并开发了模型轴突,以复制在小鼠中枢神经系统不同区域实验观察到的髓鞘分布。我们研究了髓鞘的空间排列如何影响具有皮质与胼胝体髓鞘形成模式的轴突中的传播以及传导失败的易感性。我们的结果表明,髓鞘形成的区域差异显著影响传导时间和信号可靠性。动作电位传播对有髓鞘和裸露节段的特定位置、长度及排列顺序的敏感性揭示了非线性和路径依赖性传导。此外,髓鞘形成模式影响脱髓鞘时的信号脆弱性,胼胝体模式对髓鞘变化尤为敏感。这些发现突出了髓鞘形成胶质细胞在脑功能和疾病中的关键作用。