Stoecker Lena, Cedillo-Servin Gerardo, König Niklas F, de Graaf Freek V, García-Jiménez Marcela, Hofmann Sandra, Ito Keita, Wentzel Annelieke S, Castilho Miguel
Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.
Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.
Adv Mater. 2025 Mar;37(10):e2410292. doi: 10.1002/adma.202410292. Epub 2025 Jan 27.
Current challenges in tissue engineering include creation of extracellular environments that support and interact with cells using biochemical, mechanical, and structural cues. Spatial control over these cues is currently limited due to a lack of suitable fabrication techniques. This study introduces Xolography, an emerging dual-color light-sheet volumetric printing technology, to achieve control over structural and mechanical features for hydrogel-based photoresins at micro- to macroscale while printing within minutes. A water-soluble photoswitch photoinitiator system and a library of naturally-derived, synthetic, and thermoresponsive hydrogels for Xolography are proposed. Centimeter-scale, 3D constructs with positive features of 20 µm and negative features of ≈100 µm are fabricated with control over mechanical properties (compressive moduli 0.2 kPa-6.5 MPa). Notably, switching from binary to grayscaled light projection enables spatial control over stiffness (0.2-16 kPa). As a proof of concept, grayscaled Xolography is leveraged with thermoresponsive hydrogels to introduce reversible anisotropic shape changes beyond isometric shrinkage. Xolography of viable cell aggregates is finally demonstrated, laying the foundation for cell-laden printing of dynamic, cell-instructive environments with tunable structural and mechanical cues in a fast one-step process. Overall, these innovations unlock unique possibilities of Xolography across multiple biomedical applications.
组织工程学当前面临的挑战包括利用生化、机械和结构线索创建能够支持细胞并与细胞相互作用的细胞外环境。由于缺乏合适的制造技术,目前对这些线索的空间控制受到限制。本研究引入了全息光刻技术,这是一种新兴的双色光片体积打印技术,可在几分钟内完成打印的同时,在微米到宏观尺度上实现对水凝胶基光树脂的结构和机械特性的控制。本文提出了一种水溶性光开关光引发剂体系以及用于全息光刻技术的天然衍生、合成和热响应水凝胶库。制备出了厘米级的3D构建体,其正特征为20微米,负特征约为100微米,并且能够控制其机械性能(压缩模量为0.2千帕至6.5兆帕)。值得注意的是,从二元光投影切换到灰度光投影能够实现对刚度(0.2至16千帕)的空间控制。作为概念验证,利用灰度全息光刻技术和热响应水凝胶实现了除等轴收缩之外的可逆各向异性形状变化。最终展示了活细胞聚集体的全息光刻技术,为在快速一步法中打印具有可调结构和机械线索的动态、细胞指导环境的载细胞打印奠定了基础。总体而言,这些创新为全息光刻技术在多种生物医学应用中开启了独特的可能性。