Suppr超能文献

在空气质量模拟中推断和评估基于卫星的氮氧化物排放估算约束条件。

Inferring and evaluating satellite-based constraints on NO emissions estimates in air quality simulations.

作者信息

East James D, Henderson Barron H, Napelenok Sergey L, Koplitz Shannon N, Sarwar Golam, Gilliam Robert, Lenzen Allen, Tong Daniel Q, Pierce R Bradley, Garcia-Menendez Fernando

机构信息

Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27606, USA.

Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental, Protection Agency, Research Triangle Park, NC 27711, USA.

出版信息

Atmos Chem Phys. 2022 Dec 20;22(24):15981-16001. doi: 10.5194/acp-22-15981-2022.

Abstract

Satellite observations of tropospheric NO columns can provide top-down observational constraints on emissions estimates of nitrogen oxides (NO ). Mass-balance-based methods are often applied for this purpose but do not isolate near-surface emissions from those aloft, such as lightning emissions. Here, we introduce an inverse modeling framework that couples satellite chemical data assimilation to a chemical transport model. In the framework, satellite-constrained emissions totals are inferred using model simulations with and without data assimilation in the iterative finite-difference mass-balance method. The approach improves the finite-difference mass-balance inversion by isolating the near-surface emissions increment. We apply the framework to separately estimate lightning and anthropogenic NO emissions over the Northern Hemisphere for 2019. Using overlapping observations from the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring Instrument (TROPOMI), we compare separate NO emissions inferences from these satellite instruments, as well as the impacts of emissions changes on modeled NO and O. OMI inferences of anthropogenic emissions consistently lead to larger emissions than TROPOMI inferences, attributed to a low bias in TROPOMI NO retrievals. Updated lightning NO emissions from either satellite improve the chemical transport model's low tropospheric O bias. The combined lighting and anthropogenic emissions updates improve the model's ability to reproduce measured ozone by adjusting natural, long-range, and local pollution contributions. Thus, the framework informs and supports the design of domestic and international control strategies.

摘要

对流层一氧化氮柱的卫星观测可以为氮氧化物(NO )排放估算提供自上而下的观测约束。基于质量平衡的方法通常用于此目的,但无法区分近地表排放与高空排放,如闪电排放。在此,我们引入了一个将卫星化学数据同化与化学传输模型相结合的反演建模框架。在该框架中,在迭代有限差分质量平衡方法中,使用有和没有数据同化的模型模拟来推断受卫星约束的排放总量。该方法通过分离近地表排放增量改进了有限差分质量平衡反演。我们应用该框架分别估算了2019年北半球的闪电和人为NO 排放。利用臭氧监测仪(OMI)和对流层监测仪(TROPOMI)的重叠观测数据,我们比较了这些卫星仪器单独的NO 排放推断结果,以及排放变化对模拟的NO和O的影响。OMI对人为排放的推断结果始终导致比TROPOMI推断结果更大的排放,这归因于TROPOMI NO反演中的低偏差。来自任何一颗卫星的更新后的闪电NO 排放改善了化学传输模型在对流层低层的O偏差。闪电和人为排放更新的结合通过调整自然、长距离和本地污染贡献,提高了模型再现实测臭氧的能力。因此,该框架为国内和国际控制策略的设计提供了信息并给予支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83f4/11770562/7690543ea374/nihms-2038940-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验