Suppr超能文献

通过有效解析技术得到的(2 + 1)维若朗 - 米奥德克演化方程的孤子解

Soliton solutions of the (2 + 1)-dimensional Jaulent-Miodek evolution equation via effective analytical techniques.

作者信息

Zubair Raza Muhammad, Abdaal Bin Iqbal Muhammad, Khan Aziz, Almutairi D K, Abdeljawad Thabet

机构信息

Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.

Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, 11586, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2025 Jan 28;15(1):3495. doi: 10.1038/s41598-025-87785-z.

Abstract

In this study, we investigate the [Formula: see text]-D Jaulent-Miodek (JM) equation, which is significant due to its energy-based Schrödinger potential and applications in fields such as optics, soliton theory, signal processing, geophysics, fluid dynamics, and plasma physics. Given its broad utility, a rigorous mathematical analysis of the JM equation is essential. The primary objective of this work is to derive exact soliton solutions using the Modified Sub-Equation (MSE) and Modified Auxiliary Equation (MAE) techniques. These solutions are computed using Maple 18, and encompass a variety of wave structures, including bright solitons, kink solitons, periodic waves, and singular solitons. The potential applications of these solutions span diverse domains, such as nonlinear dynamics, fiber optics, ocean engineering, software engineering, electrical engineering, and other areas of physical science. Through numerical simulations, we visualize the physical characteristics of the obtained soliton solutions using three distinct graphical formats: 3D surface plots, 2D contour plots, and line plots, based on the selection of specific parameter values. Our results demonstrate that the MSE and MAE techniques are not only efficient but also straightforward in extracting soliton solutions for the JM equation, outperforming other existing methods. Furthermore, the solutions presented in this study are novel, representing contributions that have not been previously reported in the literature.

摘要

在本研究中,我们研究了[公式:见正文]-D 若朗 - 米奥德克(JM)方程,该方程因其基于能量的薛定谔势以及在光学、孤子理论、信号处理、地球物理学、流体动力学和等离子体物理学等领域的应用而具有重要意义。鉴于其广泛的实用性,对 JM 方程进行严格的数学分析至关重要。这项工作的主要目标是使用修正子方程(MSE)和修正辅助方程(MAE)技术推导精确的孤子解。这些解是使用Maple 18计算得出的,涵盖了多种波结构,包括亮孤子、扭结孤子、周期波和奇异孤子。这些解的潜在应用跨越多个不同领域,如非线性动力学、光纤光学、海洋工程、软件工程、电气工程以及物理科学的其他领域。通过数值模拟,我们根据特定参数值的选择,使用三种不同的图形格式:三维表面图、二维等高线图和线图,直观展示了所获得孤子解的物理特性。我们的结果表明,MSE 和 MAE 技术在为 JM 方程提取孤子解方面不仅高效而且简便,优于其他现有方法。此外,本研究中给出的解是新颖的,代表了此前文献中未曾报道过的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70e1/11775139/f353e96377ab/41598_2025_87785_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验