Piranej Selma, Ogasawara Hiroaki, Zhang Luona, Jackson Krista, Bazrafshan Alisina, Salaita Khalid
Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States.
ACS Nano. 2025 Feb 11;19(5):5363-5375. doi: 10.1021/acsnano.4c13068. Epub 2025 Jan 30.
A major challenge in the field of synthetic motors relates to mimicking the precise, motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA "legs" that hybridize to RNA "fuel", and move upon enzymatic consumption of RNA. We first concealed RNA fuel sites using photocleavable oligonucleotides that block DNA leg binding. Upon UV activation, the RNA blocking strands dissociate, exposing the RNA fuel and initiating active, directional motion. We also created a "brake" system using photocleavable DNA stalling strands, anchoring the motors until UV light removes the "brake" while simultaneously "fueling" the motors, initiating spatiotemporally controlled stop → go motion. Additionally, we modified the "brake" system to activate the motors via a chemical input, while an optical input is required to fuel the motors. This dual-input approach, functioning as an "AND" gate, demonstrates the potential for DNA motors to perform light-triggered computational tasks. Our work provides a proof of concept for enhancing the complexity and functionality of synthetic motors.
合成马达领域的一个主要挑战是模仿生物马达蛋白精确的运动,这种运动介导诸如货物运输、细胞移动和细胞分裂等过程。为应对这一挑战,我们开发了一种利用光来控制基于DNA的合成马达运动的系统。DNA马达由一个用DNA“腿”修饰的中心底盘颗粒组成,这些“腿”与RNA“燃料”杂交,并在RNA被酶消耗时移动。我们首先使用可光裂解的寡核苷酸隐藏RNA燃料位点,这些寡核苷酸会阻断DNA腿的结合。在紫外线激活后,RNA阻断链解离,暴露出RNA燃料并启动主动的、定向的运动。我们还使用可光裂解的DNA停滞链创建了一个“刹车”系统,将马达固定住,直到紫外线去除“刹车”,同时为马达“提供燃料”,启动时空可控的停止→运行运动。此外,我们对“刹车”系统进行了改进,通过化学输入来激活马达,而需要光输入为马达提供燃料。这种双输入方法,起到“与”门的作用,展示了DNA马达执行光触发计算任务的潜力。我们的工作为提高合成马达的复杂性和功能性提供了概念验证。