Suppr超能文献

地理社交网络在美国县级政治集群中的早期预警能力:观察性研究。

Geosocial Media's Early Warning Capabilities Across US County-Level Political Clusters: Observational Study.

作者信息

Arifi Dorian, Resch Bernd, Santillana Mauricio, Guan Weihe Wendy, Knoblauch Steffen, Lautenbach Sven, Jaenisch Thomas, Morales Ivonne, Havas Clemens

机构信息

Department of Geoinformatics, University of Salzburg, Salzburg, Austria.

Interdisciplinary Transformation University Austria, Linz, Austria.

出版信息

JMIR Infodemiology. 2025 Jan 30;5:e58539. doi: 10.2196/58539.

Abstract

BACKGROUND

The novel coronavirus disease (COVID-19) sparked significant health concerns worldwide, prompting policy makers and health care experts to implement nonpharmaceutical public health interventions, such as stay-at-home orders and mask mandates, to slow the spread of the virus. While these interventions proved essential in controlling transmission, they also caused substantial economic and societal costs and should therefore be used strategically, particularly when disease activity is on the rise. In this context, geosocial media posts (posts with an explicit georeference) have been shown to provide a promising tool for anticipating moments of potential health care crises. However, previous studies on the early warning capabilities of geosocial media data have largely been constrained by coarse spatial resolutions or short temporal scopes, with limited understanding of how local political beliefs may influence these capabilities.

OBJECTIVE

This study aimed to assess how the epidemiological early warning capabilities of geosocial media posts for COVID-19 vary over time and across US counties with differing political beliefs.

METHODS

We classified US counties into 3 political clusters, democrat, republican, and swing counties, based on voting data from the last 6 federal election cycles. In these clusters, we analyzed the early warning capabilities of geosocial media posts across 6 consecutive COVID-19 waves (February 2020-April 2022). We specifically examined the temporal lag between geosocial media signals and surges in COVID-19 cases, measuring both the number of days by which the geosocial media signals preceded the surges in COVID-19 cases (temporal lag) and the correlation between their respective time series.

RESULTS

The early warning capabilities of geosocial media data differed across political clusters and COVID-19 waves. On average, geosocial media posts preceded COVID-19 cases by 21 days in republican counties compared with 14.6 days in democrat counties and 24.2 days in swing counties. In general, geosocial media posts were preceding COVID-19 cases in 5 out of 6 waves across all political clusters. However, we observed a decrease over time in the number of days that posts preceded COVID-19 cases, particularly in democrat and republican counties. Furthermore, a decline in signal strength and the impact of trending topics presented challenges for the reliability of the early warning signals.

CONCLUSIONS

This study provides valuable insights into the strengths and limitations of geosocial media data as an epidemiological early warning tool, particularly highlighting how they can change across county-level political clusters. Thus, these findings indicate that future geosocial media based epidemiological early warning systems might benefit from accounting for political beliefs. In addition, the impact of declining geosocial media signal strength over time and the role of trending topics for signal reliability in early warning systems need to be assessed in future research.

摘要

背景

新型冠状病毒病(COVID-19)在全球引发了重大健康担忧,促使政策制定者和医疗保健专家实施非药物公共卫生干预措施,如居家令和口罩强制令,以减缓病毒传播。虽然这些干预措施在控制传播方面被证明是必不可少的,但它们也造成了巨大的经济和社会成本,因此应战略性地使用,特别是在疾病活动上升时。在这种背景下,地理社交媒体帖子(带有明确地理参考的帖子)已被证明是预测潜在医疗危机时刻的一个有前景的工具。然而,先前关于地理社交媒体数据预警能力的研究在很大程度上受到空间分辨率粗糙或时间范围短的限制,对地方政治信仰如何影响这些能力的理解有限。

目的

本研究旨在评估地理社交媒体帖子对COVID-19的流行病学预警能力如何随时间变化以及在美国不同政治信仰的县之间如何差异。

方法

我们根据过去6个联邦选举周期的投票数据,将美国各县分为3个政治集群,即民主党县、共和党县和摇摆县。在这些集群中,我们分析了连续6波COVID-19疫情(2020年2月至2022年4月)期间地理社交媒体帖子的预警能力。我们特别研究了地理社交媒体信号与COVID-19病例激增之间的时间滞后,测量地理社交媒体信号先于COVID-19病例激增的天数(时间滞后)以及它们各自时间序列之间的相关性。

结果

地理社交媒体数据的预警能力在不同政治集群和COVID-19疫情波次中有所不同。平均而言,共和党县的地理社交媒体帖子比COVID-19病例提前21天,而民主党县为14.6天,摇摆县为24.2天。总体而言,在所有政治集群的6波疫情中,有5波地理社交媒体帖子先于COVID-19病例。然而,我们观察到帖子先于COVID-19病例的天数随着时间的推移而减少,特别是在民主党县和共和党县。此外,信号强度的下降和热门话题的影响对预警信号的可靠性提出了挑战。

结论

本研究为地理社交媒体数据作为流行病学预警工具的优势和局限性提供了有价值的见解,特别强调了它们在县级政治集群之间的变化情况。因此,这些发现表明,未来基于地理社交媒体的流行病学预警系统可能会受益于考虑政治信仰。此外,地理社交媒体信号强度随时间下降的影响以及热门话题在预警系统中对信号可靠性的作用需要在未来研究中进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1128/11826950/c81f4cd50669/infodemiology_v5i1e58539_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验